
Por$olio	 Op*miza*on	 with	 R/Rmetrics	

Diethelm	 Würtz	
Tobias	 Setz	
Yohan	 Chalabi	
William	 Chen	
Andrew	 Ellis	

Rmetrics	 Associa<on	 &	 Finance	 Online	 Publishing	

Update 2015

Henry Clausen

Henry Clausen
Henry Clausen
Diethelm Würtz�

R/AMPL API 2.0

RMETRICS CORE TEAM

MARCH 2015

PREFACE

ABOUT THIS HANDBOOK

This handbook is a User and Reference Guide for the Rmetrics R/AMPL
API 2.0. It brings the whole world of professional solvers to your fingertips!

ABOUT PART I

The sections in Part I

• R/AMPL Solver Interface

• Coin-or Infrastructure

• Kestrel/Neos Solver Interface

• Ampl/Rneos Solver Interface

describe the R/AMPL API 1.0 solver environment taht is about 4 years old.
Note all four sections have to be upgraded to Version 2.0! This is not yet
done.

GETTING STARTED

What you need to run the examples in the handbook ...

• Install the appropriate AMPL Demo Version for Windows, Max OSX,
or Linux. Be sure that the executibles are in the PATH.

• Load Rmetrics Package fPortfolio

• Source the functions listed in Appendix I.

Try and enjoy it!

Zurich, March 2015

iii

CONTENTS

PREFACE III

About this Handbook . iii
About PART I . iii
Getting Started . iii

CONTENTS V

I Solvers 1

1 R/AMPL SOLVER INTERFACE 3
1.1 AMPL: A Model Programming Language 3
1.2 Working with AMPL on the Console 5
1.3 The Rmetrics Interface Concept . 7

2 COIN-OR INFRASTRUCTURE 11
2.1 Binary Distribution Project . 11
2.2 Solver for Quadratic Programming Problems 12
2.3 Solver for Mixed Integer Programming 14

3 KESTREL/NEOS SOLVER INTERFACE 15
3.1 Kestrel: Interface . 15
3.2 Running a Kestrel Job . 16

4 AMPL/RNEOS SOLVER INTERFACE 19
4.1 rneos: NEOS Server Interface . 19
4.2 Using rneos Together with AMPL . 21
4.3 Preparing Model, Data and Run Files 21

II Mean-Variance Designs 25

5 MEAN-VARIANCE PORTFOLIOS 29
5.1 Introduction . 29

v

VI CONTENTS

5.2 Feasible set . 30
5.3 Global Minimum Variance Porfolio 32
5.4 The Efficient Minimum Variance Portfolio 35
5.5 Efficient Maximum Return Portfolio 37
5.6 Equi-Distant Return Frontier Portfolio 39
5.7 Critical Line Algorithm . 41
5.8 Maximum Sharpe Ratio Portfolio 42
5.9 Quadratic Sharpe-Ratio portfolio 45
5.10 Mean-Variance Hull . 47

6 LOWER PARTIAL MOMENTS 53
6.1 Introduction . 53
6.2 Nonlinear Lower Partial Moments Portfolio 55
6.3 Linear Mean-Shortfall Portfolio . 57
6.4 Mean-Semivariance Portfolio . 59
6.5 Quadratic Lower Partial Moments Portfolio 61
6.6 Dependence on a . 63

III Robust Portfolio Estimations 65

7 COVARIANCE ROBUSTIFICATION 69
7.1 Introduction . 70
7.2 Rank Correlation Estimators . 72
7.3 High Breakdown Points Estimators 73
7.4 Shrinkage Estimators . 76

8 M AND S ESTIMATORS 83
8.1 Introduction . 83
8.2 M Portfolios . 84
8.3 Huber loss . 84
8.4 S Portfolios . 89

9 MAD-PORTFOLIOS 91
9.1 Introduction . 91
9.2 Nonlinear MAD-Portfolio . 93
9.3 Linear Min-Risk MAD-Portfolio . 95
9.4 Linear efficient MAD-Portfolio . 98
9.5 Max-Return MAD-Portfolio . 100
9.6 Equi-distant Return Frontier . 103
9.7 Critical Line Algorithm MAD-Portfolio 105
9.8 Reward/Risk Ratio Portfolio . 106
9.9 Hull of the MAD-Portfolio . 109

CONTENTS VII

IV Mean-CVaR Designs 111

10 MEAN-CVAR PORTFOLIOS 115
10.1 Introduction . 115
10.2 Global Minimum Risk CVaR Portfolio 117
10.3 Efficient Min-Risk Portfolios . 119
10.4 Efficient Max-Return Portfolios . 122
10.5 Equi-Distant Return Frontier . 125
10.6 Critical Line Algorithm . 127
10.7 STARR Ratio Portfolio . 128
10.8 Mean-CVaR Hull . 131

11 MINIMAX PORTFOLIOS 135
11.1 Introduction . 135
11.2 MiniMax Portfolio . 135
11.3 Efficient Minimax Portfolio . 137
11.4 Equi-distant Return Frontier . 140
11.5 Hull . 141

V Mean-CDaR Designs 145

12 MEAN-CDAR PORTFOLIOS 149
12.1 Introduction . 149
12.2 Global Minimum Risk Efficient Portfolio 151
12.3 Minimum Risk Mean-CDaR Efficient Portfolios 153
12.4 Maximum Return Mean-CDaR Efficient Portfolio 156
12.5 Equi-distant Return Frontier . 159
12.6 The CDAR Critical Line Algorithm 161
12.7 Reward/Risk Ratio Portfolio . 162
12.8 Hull . 165

VI Diversification 169

13 PORTFOLIO DIVERSIFICATION 173
13.1 Introduction . 173
13.2 Diversification . 175
13.3 Herfindahl Diversified Portfolios 176
13.4 Entropy De-Concentrated Portfolios 182
13.5 Dependence Diversified Portfolios 183

14 COVARIANCE RISK PARITY 187
14.1 Introduction . 187
14.2 Risk Parity Portfolio . 188

VIII CONTENTS

14.3 Efficient Risk-Parity portfolio . 190
14.4 Efficient frontier . 192

VII Multiobjective Programming 195

15 MULIT-OBJECTIVE VARIANCE PORTFOLIOS 199
15.1 Introduction . 199
15.2 Critical Line Algorithm . 199
15.3 Mean - Covariance - Entropy Diversification 203

VIII Constraints 207

16 CONSTRAINED PORTFOLIOS 211
16.1 Introduction . 211
16.2 Short Selling Portfolios . 212
16.3 Box Constrained Markowitz Portfolio 215
16.4 Group Constraints . 219
16.5 Turnover Constraints . 222
16.6 Tracking error . 224

17 INTEGER CONSTRAINS 227
17.1 Introduction . 227
17.2 Buy-in Constraints . 229
17.3 Cardinality Constraints . 230
17.4 Round Lot Constraints . 231

18 TRANSACTION COSTS 239
18.1 Introduction . 239
18.2 Linear Transaction Cost Constraints 240
18.3 Piece-wise Linear Transaction Constraints 243
18.4 Fixed Transaction Costs . 245
18.5 Combination of Fixed and Piece-wise Linear Transaction

Costs . 248

IX Appendix 251

19 R/AMPL API 255
19.1 R/AMPL API 1.0 . 255
19.2 R/AMPL API 2.0 . 255

PART I

SOLVERS

1

CHAPTER 1

R/AMPL SOLVER INTERFACE

> library(fPortfolio)

This chapter presents the Rmetrics interface for portfolio optimization
together with AMPL. AMPL is an algebraic modeling language for solving
linear, quadratic, and nonlinear optimization problems in discrete or
continuous variables.
We report how to download, to install and how to use AMPL together
with Rmetrics. We introduce how to invoke AMPL from the console. Fur-
thermore we explain the idea and concept behind the Rmetrics/AMPL
interface. Finally we introduce the Rmetrics AMPL library which allows
to set up the most often used mathematical programming and portfolio
models.

1.1 AMPL: A MODEL PROGRAMMING LANGUAGE

AMPL was developed at Bell Laboratories. The strength of AMPL is, that
this programming language uses common notation and familiar concepts
to formulate optimization models and examine solutions, while the com-
puter manages communication with an appropriate commercial or open
source solver. The home of AMPL1 is the definite source for all kind of
information about AMPL, including the AMPL book.

http://www.ampl.com/BOOK/index.html

AMPL: A Modeling Language for Mathematical Programming

Robert Fourer, David M. Gay, and Brian W. Kernighan

Brooks Cole Publishing Company, Cengage Learning, 2002

517 + xxi pp., ISBN 0-534-38809-4

1http://www.ampl.com

3

http://www.ampl.com

4 R/AMPL SOLVER INTERFACE

How to get AMPL

In the following we briefly describe how to buy, how to get a trial version,
or how to download the student edition of the AMPL software.

30-day AMPL trial version

AMPL offers a full-featured, unrestricted copy of AMPL with a trial license
good for 30 days. Note, the AMPL trial does not have solver built ins. More
information you can get from the AMPL trial page2 where also links to
solver trials are given.

Student edition

For the student editions3 of AMPL and solvers detailed information can
also be found on the AMPL server.

Quick Start:
"To start learning about AMPL [�] download chapter 1 of the AMPL book,
then proceed in any of the following ways to access the AMPL software
and solvers:"

1. Try AMPL Page: "Go to the Try AMPL! page, where you can send models, data, and
commands to a remote version of the AMPL Student Edition and a selection of solvers.
A simple web interface lets you choose examples from the book and then experiment
with changes in a series of runs.

2. Windows: "Download the AMPL Student Edition zip archive file, amplcml.zip. Then
follow the instructions below to unpack and run the AMPL program, the CPLEX,
Gurobi, and MINOS solvers, and the Kestrel client for free access to additional solvers
over the Internet. Once AMPL is running, you can type commands just as they are
shown in the AMPL book."

3. Unix/Linux: "The AMPL Student Edition and compatible solvers are available for all
of the popular Unix workstations, as well as for Linux and other Unix-based operating
systems on PCs. Consult the table in the instructions below to download and set
up the AMPL binary that is appropriate for your platform. Then visit AMPL’s solver
download instructions to obtain one or more solvers for AMPL; Linux and Solaris
users may alternatively download the Kestrel client to get access to solvers over the
Internet. Once AMPL is running, you can type commands just as they are shown in
the AMPL book.

Download and installation instructions

AMPL gives instructions for downloading its interface and related software.
Here comes a short summary of the information provided by AMPL.

• All downloadable versions of AMPL are Student Editions, which are limited to prob-
lems of 300 variables and 300 constraints and objectives, but are full-featured in
other respects. They can be used for small-scale evaluation and testing.

2http://www.ampl.com/trial.html
3http://www.ampl.com/DOWNLOADS/index.html

http://www.ampl.com/trial.html
http://www.ampl.com/DOWNLOADS/index.html

1.2. WORKING WITH AMPL ON THE CONSOLE 5

• Evaluation copies and updates for AMPL Professional Editions are available from
AMPL vendors.

• Several solvers can be downloaded separately in binary executable form. Problem
size limitations vary, but are mostly similar to the limitations on the AMPL Student
Edition. Information on unrestricted versions can be found in the AMPL solver
listing.

Solvers provided by AMPL

Here comes a summary with the commercial solvers provided by AMPL.

• CPLEX: Solves linear and convex quadratic programs by simplex or interior-point
methods, and linear and convex quadratic integer programs by a branch-and-bound
procedure.

• DONLP2: Solves nonlinear optimization problems using a sequential quadratic
programming algorithm and dense-matrix linear algebra

• Gurobi: Solves linear programs by primal or dual simplex methods, and linear mixed-
integer programs by a branch-and-bound procedure.

• KNITRO: Solves linear and nonlinear optimization problems in continuous variables,
using a choice of interior-point and active-set methods. General constraints are
allowed, and functions may be convex or nonconvex. KNITRO uses full 2nd-derivative
information from AMPL, and supports AMPL’s complementarity constraints.

• LOQO: Solves linear and nonlinear optimization problems in continuous variables,
using interior-point methods.

• lp_solve: Solves linear and linear integer programs of moderate scale.

• MINOS: Solves linear programs by the primal simplex method, and nonlinear opti-
mization problems in continuous variables by use of a reduced-gradient approach.

• SNOPT: Solves linear programs by the primal simplex method, and nonlinear opti-
mization problems in continuous variables by use of a sequential quadratic program-
ming approach that employs limited-memory approximations to 2nd-derivative
information.

1.2 WORKING WITH AMPL ON THE CONSOLE

Download and install AMPL, with the appropriate license for you, either
the full, a trial or the student edition. Start to read Chapter 1 of the AMPL
book or inspect a tutorial from the web to learn the language.

Example: Solve the MV Portfolio interactively with AMPL

Let us optimize the mean-variance Markowitz portfolio problem with
long only constraints. Here are the necessary three steps.

Step 1:
Write the model file and save it under the name ampl.mod:

Quadratic Programming

Mean-Variance Markowitz Problem with Long Only Constraints

6 R/AMPL SOLVER INTERFACE

param N; # Number of assets

param mu{1..N}; # Asset means

param Sigma{1..N, 1..N}; # Covariance matrix

param targetReturn; # Target return

var w{1..N} >= 0; # Variable definition

minimize Risk: # Objective function

sum {i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j];

subject to Return: # Return Constraints

sum{i in 1..N} mu[i]*w[i] = targetReturn;

subject to Budget: # Budget Constraints

sum{i in 1..N} w[i] = 1;

Step 2:
Write the data file and save it under the name ampl.dat:

Data File for the Swiss Pension Fund Benchmark

The Number of Assets:

param N := 6;

The Return Vector:

param mu :=

1 4.066340e-05

2 0.08417544

3 0.02389356

4 0.005531533

5 0.05905151

6 0.08576789;

The Covariance Matrix:

param Sigma :

1 2 3 4 5 6 :=

1 0.01589955 -0.01274142 0.001799383 0.009803865 -0.01588837 -0.01323794

2 -0.01274142 0.5846121 0.03033648 -0.01407469 0.4115984 0.2983962

3 0.001799383 0.03033648 0.08513795 0.0009250538 0.02481619 0.01554892

4 0.009803865 -0.01407469 0.0009250538 0.01495111 -0.02332223 -0.01724687

5 -0.01588837 0.4115984 0.02481619 -0.02332223 0.5350326 0.3648052

6 -0.01323794 0.2983962 0.01554892 -0.01724687 0.3648052 0.3231242;

;

The Target Return:

param targetReturn := 0.04307677 ;

Step 3:
Write the run file and save it under the name ampl.run:

option solver cplex;

model ampl.mod;

data ampl.dat;

1.3. THE RMETRICS INTERFACE CONCEPT 7

solve;

display w > ampl.txt;

exit;

Now start a console window and run the optimization. Be sure that the
ampl and binary executibles, here cplex, are in your binary search path.

> ampl ampl.run

CPLEX 11.2.0: optimal solution; objective 0,06006761091

14 QP barrier iterations

No basis.

> cat ampl.txt

w[*] :=

1 3.31387e-08

2 0.00864064

3 0.254318

4 0.335778

5 4.89336e-09

6 0.401263

These are the weights of the six assets optimized for the long only mean-
variance portfolio with a target return 0.04307677 and target Risk (vari-
ance) 0.06006761091.

1.3 THE RMETRICS INTERFACE CONCEPT

Writing a simple R Interface for AMPL is quite easy following the concept:

1. Assume all the information on the AMPL mode, data, and run specofocations is
available.

2. Write user supplied functions amplModel*(), amplData*(), amplRun*() which cre-
ate the foo.mod, foo.dat, and foo.run AMPL files. Here foo is considered as project
name.

3. Run AMPL through the system command system("ampl foo.run"). The result will
be stored in AMPLs output file foo.txt.

The Rmetrics R/AMPL interface provides several functions to write and
print AMPL model files, data files and run files. Here is a list of these utility
functions.

LISTING 1.1: AMPL R UTILITY FUNCTIONS

Function: Description:

amplModelOpen Opens a writes to an AMPL model file

amplModelAdd Adds model specs to an existing AMPL model file

amplModelShow Shows the content of an AMPL .mod file

Function: Description:

amplDataOpen Opens and writes the header to an AMPL data file

8 R/AMPL SOLVER INTERFACE

amplDataAddValue Adds a numeric value to an AMPL data file

amplDataAddVector Adds a numeric vector to an AMPL data file

amplDataAddMatrix Adds a numeric matrix to an AMPL data file

amplDataSemicolon Adds a semicolon on the end of a data input line

amplDataShow Shows the content of an AMPL data file

Function: Description:

amplRunOpen Opens a run file

amplRunAdd Adds run specs to an existing AMPL run file

amplRunShow Shows the content of an AMPL run file

To run the example from the previous section under R we proceed in the
following way.

Step 1:
Write the model file from R and save it under the name ampl.mod, i.e. for
the project name we have choosen "ampl" and the file extension is "mod".

> amplModelOpen("ampl")

> model = c(

"# Quadratic Programming",

"# Mean-Variance Markowitz Problem with Long Only Constraints",

"param N;",

"param mu{1..N};",

"param Sigma{1..N, 1..N};",

"param targetReturn;",

"var w{1..N} >= 0;",

"minimize Risk: sum {i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j];",

"subject to Return: sum{i in 1..N} mu[i]*w[i] = targetReturn;",

"subject to Budget: sum{i in 1..N} w[i] = 1;")

> amplModelAdd(model, "ampl")

> amplModelShow("ampl")

Quadratic Programming

Mean-Variance Markowitz Problem with Long Only Constraints

param N;

param mu{1..N};

param Sigma{1..N, 1..N};

param targetReturn;

var w{1..N} >= 0;

minimize Risk: sum {i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j];

subject to Return: sum{i in 1..N} mu[i]*w[i] = targetReturn;

subject to Budget: sum{i in 1..N} w[i] = 1;

Step 2:
Write the data file and save it under the name ampl.dat:

> N = 6

> data = 100 * LPP2005REC[, 1:N]

> amplDataOpen("ampl")

> amplDataAddValue("N", N, "ampl")

> amplDataAddVector("mu", colMeans(data), "ampl")

> amplDataAddMatrix("Sigma", cov(data), "ampl")

> amplDataAddValue("targetReturn", mean(data), "ampl")

1.3. THE RMETRICS INTERFACE CONCEPT 9

Step 3:
Write the run file and save it under the name ampl.run:

> amplRunOpen("ampl")

> run = c(

"option solver cplex;",

"model ampl.mod;",

"data ampl.dat;",

"solve;",

"display w > ampl.txt;",

"exit;")

> amplRunAdd(run, "ampl")

> amplRunShow("ampl")

option solver cplex;

model ampl.mod;

data ampl.dat;

solve;

display w > ampl.txt;

exit;

Final Step:
Run the portfolio Optimization.

> system("ampl ampl.run")

> as.data.frame(readLines("ampl.txt"))

readLines("ampl.txt")

1 w [*] :=

2 1 3.31445e-08

3 2 0.00862809

4 3 0.254323

5 4 0.335773

6 5 4.89408e-09

7 6 0.401276

8 ;

9

This approach can now easily be customized for solving portfolios in a
very general and powerful environment, the R/AMPL interface.

CHAPTER 2

COIN-OR INFRASTRUCTURE

> library(fPortfolio)

This chapter explains how to use the Coin-Or infrastructure for portfolio
optimization together with the Rmetrics to AMPL interface. "The Com-
putational Infrastructure for Operations Research, COIN-OR1, or simply
COIN, project is an initiative to spur the development of open-source
software for the operations research community". More about the imple-
mentation of the interior-point filter line-search algorithm for large-scale
nonlinear programming can be found in Andreas Waechter and Lorenz T.
Bieglery, [2004], and in the introducton to COIN-OR tools for optimization
by Ralphs, [2009].
COIN-OR includes more than 30 projects. The projects include solvers
for linear programming nonlinear programming mixed integer linear pro-
gramming, mixed integer nonlinear programming (convex and noncon-
vex) stochastic linear programming, and semidefinite programming. Most
of the solvers are licensed under the EPL.

2.1 BINARY DISTRIBUTION PROJECT

Binary Files2 can also be obtained from the COIN-OR web site. The goal of
the COIN-OR binary distribution project is to provide sets of libraries and
executables precompiled and tested on the most popular platforms for
those users who do not need to look at or modify the source code of the
COIN projects themselves. Currently supported platforms are Windows,
Linux and MacOS.

1http://www.coin-or.org
2https://projects.coin-or.org/CoinBinary

11

http://www.coin-or.org
https://projects.coin-or.org/CoinBinary

12 COIN-OR INFRASTRUCTURE

Under windows we have installed COIN-OR in the directory
mathrmC:

AMPL

coin-or which holds the subdirectories for the bin, the include lib and
the share directories from the COIN-OR distribution. Do not forget to add
the path variable to the search environment. That is all what we have to do.
To get the software, download it3 and follow the installation instractions4.

The "CoinAll" distribution

"This part of the CoinBinary project is an effort to develop a distribution
consisting of a set of consistent, interoperable binaries built from the
source code of as large a subset of COIN-OR projects as possible. The idea
is to allow a user who wants binaries for a large number of COIN projects
and wants to ensure that they will all interoperate to be able to download
them all at once in a single distribution." Projects currently included in
CoinAll are

LISTING 2.1: PROJECTS INCLUDED IN COINALL

Solver: Description:

bonmin NL Mixed Integer Programming

cbc LP branch-and-cut solver

clp LP simplex solver

couenne branch-and-bound NL MI Programming

ipopt IP general large-scale NL optimization

symphony Linear Mixed Integer Programming

To get information from insideR on your downloaded version, for example
type

> system("ipopt -v")

> system("bonmin -v")

> system("couenne -v")

2.2 SOLVER FOR QUADRATIC PROGRAMMING PROBLEMS

The COIN-OR infrastructure offers us for the quadratic programming
problems the solver ipopt.

3http://www.coin-or.org/download/binary
4https://projects.coin-or.org/CoinBinary/wiki/InstallationInstructions

http://www.coin-or.org/download/binary
https://projects.coin-or.org/CoinBinary/wiki/InstallationInstructions

2.2. SOLVER FOR QUADRATIC PROGRAMMING PROBLEMS 13

Example: Global minimum Markowitz portfolio - ipopt

ipopt is the default solver for continuous nonlinear programs. To solve
the long only mean-variance portfolio optimization problem we can use
this solver.
Load the data

> # Load Data:

> n = 6 # number of assets

> lppData = 100 * LPP2005REC[, 1:6]

> Cov = cov(lppData)

write the AMPL model file

> # Write Model File:

> amplModelOpen("globmin")

> model <- c(

"param Cov{1..6,1..6} ;",

"var weights{1..6} >= 0;",

"minimize Risk: sum{i in 1..6} sum{j in 1..6} weights[i] * Cov[i,j] * weights[j] ;",

"s.t. Budget: sum{i in 1..6} weights[i] = 1 ;")

> amplModelAdd(model, "globmin")

> amplModelShow("globmin")

param Cov{1..6,1..6} ;

var weights{1..6} >= 0;

minimize Risk: sum{i in 1..6} sum{j in 1..6} weights[i] * Cov[i,j] * weights[j] ;

s.t. Budget: sum{i in 1..6} weights[i] = 1 ;

copy the covariance matrix to the AMPL data file

> # Write Data File:

> amplDataOpen("globmin")

> amplDataAddMatrix(data="Cov", matrix=Cov, "globmin")

and compose the AMPL run file

> # Write Run File:

> amplRunOpen("globmin")

> run <- c(

"option solver ipopt ;",

"model globmin.mod ;",

"data globmin.dat ;",

"solve ;",

"display weights > globmin.txt ;",

"exit ;")

> amplRunAdd(run, "globmin")

> amplRunShow("globmin")

option solver ipopt ;

model globmin.mod ;

data globmin.dat ;

solve ;

display weights > globmin.txt ;

exit ;

14 COIN-OR INFRASTRUCTURE

Now we arr ready to optimize the portfolio and print the optimal weights

> command = "ampl globmin.run"

> system(command, show.output.on.console = TRUE)

> read.csv("globmin.txt")

weights.......

1 1 0

2 2 0

3 3 0

4 4 0

5 5 0

6 6 0

7 ;

Exercise: Critical line algorithm

Use the COIN ipopt to solve a portfolio with an objective function speci-
fied by the critical line algorithm.

2.3 SOLVER FOR MIXED INTEGER PROGRAMMING

To solve a mixed-integer nonlinear program then the bonmin solver is the
proper one.
The couenne solver can be used used alternatively for mixed-integer non-
linear programs.

CHAPTER 3

KESTREL/NEOS SOLVER INTERFACE

> library(fPortfolio)

This chapter presents the AMPL based Kestrel/Neos interface for portfolio
optimization within Rmetrics. The NEOS Server provides access to a vari-
ety of optimization resources and solvers via the Internet. Dolan, Fourer,
Goux, Munson, and Sarich [2006] have created an interface named Kestrel
which allows to access easily the Server. "The NEOS Server enables local
modeling environments to request optimization services and retrieve the
results for local visualization and analysis, so that users have the same
convenient access to remote NEOS solvers as to those installed locally."
We use the Kestrel agent implemented for the AMPL modeling environ-
ments, amother is availalble for modeling with GAMS. These agents have
been designed in such a way that subproblems can be queued for exe-
cution and later retrieval of results. The authers claim that this makes a
rudimentary form of parallel processing avialable.

3.1 KESTREL: INTERFACE

The Kestrel client1 can be downloaded from the NEOS Web Server
To run Kestrel together with AMPL you need to have the AMPL interactive
environment installed on your local computer. This we have already done
in chpater �. For the Kestrel installation proceed in the following way.

Kestrel Client Installation

1. For Windows: Download the file kestrel.zip, and unzip the file into the same
directory as the AMPL executable.

1http://www.neos-server.org/neos/kestrel.html

15

http://www.neos-server.org/neos/kestrel.html

16 KESTREL/NEOS SOLVER INTERFACE

2. Unix: Note, requires python to be installed, Download the file kestrel.tar.gz, and
unzip the file into a directory in the path, we recommend the same directory as the
AMP binary files.

Using Kestrel from within the AMPL Environment

1. Design your model as you normally would. When choosing options, everything
should remain as per usual with the following exceptions. Choose option solver
kestrel; instead of the usual solver name. Choose the solver you want with

option kestrel_options 'solver=<solverName>';

Specify NEOS Server URL

option neos_server 'www.neos-server.org:3332';

If you do not know what solvers are available via Kestrel, submitting a job (see below)
with a nonexistent solver will return a list of enabled solvers.

2. When your kestrel_options are set, submit the job to the NEOS Server by typing

solve;

If you are somehow disconnected from the Kestrel server during your job execution,
you can specify

option kestrel_options 'job=<jobNumber> password=<password>';

and ask kestrel to

solve;

3. If your job is still in progress, your AMPL session will resume waiting. Otherwise,
your results will be retrieved. Jobs are removed from the NEOS Server after some
length of time (usually two days), so you will not be able to retrieve your job this way
after that time. To resume normal kestrel solver operation type

option kestrel_options 'solver=<solverName>';

Note: On Windows you will get an error message that the client requires
python24.dll to run. Please ignore this message, since the client can exe-
cute without this library.

3.2 RUNNING A KESTREL JOB

First we prepare model, data and run files, then we submit the job and
retrieve the results.

3.2. RUNNING A KESTREL JOB 17

Preparing Model, Data and Run Files

Step 1:
Write the model file and save it under the name ampl.mod:

> amplModelOpen(project = "kestrel")

> model <- c("param nAssets;", "param mu{1..nAssets};", "param Cov{1..nAssets, 1..nAssets};",

"param targetReturn;", "var x{1..nAssets} >= 0;", "minimize Risk:",

" sum {i in 1..nAssets} sum{j in 1..nAssets} x[i]*Cov[i,j]*x[j];",

"subject to Return:", " sum{i in 1..nAssets} mu[i]*x[i] = targetReturn;",

"subject to fullInvestment:", " sum{i in 1..nAssets} x[i] = 1;")

> amplModelAdd(model, project = "kestrel")

Step 2:
Write the data file and save it under the name ampl.dat:

> amplDataOpen(project = "kestrel")

> amplDataAddValue("nAssets", value = 6, "kestrel")

> R <- LPP2005.RET[, 1:6]

> amplDataAddVector("mu", colMeans(R), "kestrel")

> amplDataAddMatrix("Cov", cov(R), "kestrel")

> targetReturn <- mean(R)

> amplDataAddValue("targetReturn", value = targetReturn, "kestrel")

Step 3:
Write the run file and save it under the name kestrel.run:

> # AMPL Run File:

> amplRunOpen("kestrel")

> run <- c(

"reset;",

"option solver kestrel;",

"option kestrel_options 'solver=loqo';",

"model kestrel.mod;",

"data kestrel.dat;",

"solve;",

"display x > kestrel.txt;",

"exit;")

> amplRunAdd(run, "kestrel")

Submitting the Optimization Problem

Now start a console window and run the optimization. Be sure that the
ampl and kestrel binary executibles are in the binary search path.

> system("ampl kestrel.run")

Retrieving the Results from the Optimization Problem

> cat(readLines("kestrel.txt"), sep = "\n")

18 KESTREL/NEOS SOLVER INTERFACE

x [*] :=

1 0

2 0

3 0

4 0

5 0

6 0

;

These are the weights of the six assets optimized for the long only mean-
variance portfolio with a target return Rt a r g e t = 0.04307677.

CHAPTER 4

AMPL/RNEOS SOLVER INTERFACE

> library(fPortfolio)

> library(rneos)

This chapter presents the AMPL based R/Neos interface for portfolio opti-
mization within Rmetrics. Like in the case of the Kestrel client the con-
tributed rneos package provides similar access functionality to a variety
of optimization resources and solvers via the NEOS server. Bernhard Pfaff
[2006]has created anR based interface andRpackage named rneoswhich
allows easily to access and to communicate with the NEOS server.

4.1 RNEOS: NEOS SERVER INTERFACE

In his R package rneos Bernhard Pfaff has implemented the XML-RPC
based API of the Network-Enabled Optimization System, NEOS. General
information1 and especially information about the NEOS API2 is available
fom the NEOS server.
For a description of XML-RPC3 we refer to the XMLRPC server, and to
wikipedia4.
The package rneos utilizes S4-classes and methods for the communica-
tion with the NEOS server. The package depends on the packages bitops,
XMLRPC, RCurl, and XML. A first idea what these packages are good for, can
be obtained by inspecting their package descriptions. You can use for this
the function packageDescription().

1http://www.neos-server.org/neos
2http://www.neos-server.org/neos/NEOS-API.html
3http://www,xmlrpc.com
4http://en.wikipedia.org/wiki/XML-RPC

19

http://www.neos-server.org/neos
http://www.neos-server.org/neos
http://www.neos-server.org/neos/NEOS-API.html
http://www,xmlrpc.com
http://en.wikipedia.org/wiki/XML-RPC

20 AMPL/RNEOS SOLVER INTERFACE

The package bitops has functions for bitwise operations. The original S
functions were written by Steve Dutky, and the initialRport and extensions
go back to Martin Maechler.
The package XML provides many approaches for both reading and creating
XML (and HTML) documents (including DTDs), both local and accessible
via HTTP or FTP. The package suggest bitops for download.
The package RCurl provides a general network HTTP and FTP client inter-
face for R. The package is authored by Duncan Temple Lang. It depends
on bitops.
The package XMLRPC comes with functions for remote procedure calls,
RPC, via XML in R. The author of the package is again Duncan Temple
Lang. The package imports RCurl and XML, the software is availalble on
the Omegahat server.

Installation on Windows

The packages bitops, RCurl and XML are available from CRAN, XMLRPC
from Omegahat. bitops and XMLRPC can be installed as Windows binaries
directly from the CRAN server. RCurl and XML are much more tricky to
get them installed under Windows. Precompiled packages for RCurl are
available from Brian Ripley’s web site

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.13/RCurl_1.6-10.1.zip

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14/RCurl_1.7-0.1.zip

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.15/RCurl_1.7-0.1.zip

Precompiled versions for XML can be downloaded also from his site

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.13/XML_3.4-2.2.zip

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14/XML_3.4-2.2.zip

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.15/XML_3.4-2.2.zip

For XMLRCP we refer in case of the source code to the Omegahat web server

http://www.omegahat.org/XMLRPC/

and for the Windows binaries the reference is again Brian Ripley’s web
server.

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.13/XMLRPC_0.2-4.zip

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14/XMLRPC_0.2-4.zip

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.15/XMLRPC_0.2-4.zip

If you have successfully installed all these packages, then you should get
the following messages

4.2. USING RNEOS TOGETHER WITH AMPL 21

> library(rneos)

Loading required package: XMLRPC

Loading required package: RCurl

Loading required package: bitops

Loading required package: XML

when you have loaded the rneos library.

4.2 USING RNEOS TOGETHER WITH AMPL

The Rneos Interface can be used in several ways,

1. Through the Internet: upload of model and datafiles

2. Through Email: Upload of model and data files

3. AMPL/GAMS via Kestrel

4. NEOS API (XML-RPC): Clients

Clients are availalble in several languages, the one which is of interest for
us is the R client. We think one of the most comfortable ways is to use the
R client together with AMPL. That is the approach we present and discuss
in the following.

4.3 PREPARING MODEL, DATA AND RUN FILES

Our AMPL Mathematical Programming library (unpublished) contains
AMPL model scripts for the most common portfolio optimization prob-
lems. Here we show how to write model, data, and run files and how they
work together with Rneos.

Preparing the Model File

Start with the model file for the standard long-only Markowitz mean–
variance portfolio model

> amplModelOpen(project="rneos")

> model <- c(

"param nAssets;",

"param mu{1..nAssets};",

"param Cov{1..nAssets, 1..nAssets};",

"param targetReturn;",

"var x{1..nAssets} >= 0;",

"minimize Risk: sum {i in 1..nAssets} sum{j in 1..nAssets} x[i]*Cov[i,j]*x[j];",

"subject to Return: sum{i in 1..nAssets} mu[i]*x[i] = targetReturn;",

"subject to fullInvestment: sum{i in 1..nAssets} x[i] = 1;")

> amplModelAdd(model, project="rneos")

22 AMPL/RNEOS SOLVER INTERFACE

Preparing the Data File

Add the AMPL data file

> R <- LPP2005.RET[, 1:6]

> amplDataOpen(project="rneos")

> amplDataAddValue("nAssets", 6, "rneos")

> amplDataAddVector("mu", colMeans(R), "rneos")

> amplDataAddMatrix("Cov", cov(R), "rneos")

> amplDataAddValue("targetReturn", mean(R), "rneos")

Preparing the Run File

And finally compose the AMPL run file

> amplRunOpen("rneos")

> run <- c(

"solve ;",

"display x;",

"exit ;")

> amplRunAdd(run, "rneos")

Here we have the used the AMPL R constructior functions which we have
introduced in the chapter about the R/AMPL interface. Whereas the AMPL

model and data files are the same as when used together with a local
software installation or together with the Kestrel interface, note the run

file is different. The name of the solver has not to be specified in the file.

Submitting the Optimization Problem

To submit the problem to the server we have to compose model, data,
and run strings of length one, where the entries are separated by new line
characters.

> model <- paste(readLines("rneos.mod"), sep = " ", collapse = "\n")

> data <- paste(readLines("rneos.dat"), sep = " ", collapse = "\n")

> run <- paste(readLines("rneos.run"), sep = " ", collapse = "\n")

We have also to name the solver, and to which category the solver belongs
to on the NEOS server. Let us use the Coin-OR "ipopt" solver which is
part of the category "nco", non-linear constraint optimization.

> solver <- "ipopt"

> category <- "nco"

A list of solvers and categories5 can be found on the NEOS server.
The next step is to compose and submit the job. We use the following four
functions from Berhard Pfaff’s rneos package

5http://www.neos-server.org/neos/solvers/index.html

http://www.neos-server.org/neos/solvers/index.html

4.3. PREPARING MODEL, DATA AND RUN FILES 23

NgetSolverTemplate

CreateXmlString

NsubmitJob

NgetFinalResults

> amplSpec <- list(

model = model, data = data, commands = run,

comments = "NEOS")

> solverTemplate <- NgetSolverTemplate(

category = category, solvername = solver, inputMethod = "AMPL")

> xmls <- CreateXmlString(

neosxml = solverTemplate, cdatalist = amplSpec)

> submittedJob <- NsubmitJob(

xmlstring = xmls, user = "rneos", interface = "", id = 0)

> ans <- NgetFinalResults(

obj = submittedJob, convert = TRUE)

Exercise: submitRneos Function

It is left to the reader to write a function submitRneos(model, data,

run)() with input arguments for the AMPL files and which gives back the
results returned from the NEOS Server.

Extracting Information Returned from NEOS

All results from the NEOS server have to be extracted from the returned
value, ans. This requires some string manipulations on the text file. As an
example we show how to retrieve the optimized weights. The returned
variable ans is an object class S4 and contains the following slots

> slotNames(ans)

[1] "ans" "method" "call" "nc"

The entry @ans provides the desired results.

> nAssets <- 6

> out <- strsplit(ans@ans, split = "\n")[[1]]

> Index <- (grep("x .*. :=", out) + 1):(grep("^;$", out) - 1)

> Out <- out[Index]

> splits <- na.omit(as.numeric(strsplit(paste(Out, collapse = " "), " ")[[1]]))

> weights <- splits[seq(2, 2 * nAssets, by = 2)]

> names(weights) <- colnames(R)

> weights

SBI SPI SII LMI MPI ALT

5.0113e-04 1.4284e-02 2.5336e-01 3.3584e-01 7.5345e-05 3.9594e-01

Note, to retrieve information from the returned text file may be sometimes
very ugly, when we do it in this way. As an alternative one can use (i)
formatted output, or (ii) directly access the underlying XML protocol.

PART II

MEAN-VARIANCE DESIGNS

25

4.3. PREPARING MODEL, DATA AND RUN FILES 27

CHAPTER 5

MEAN-VARIANCE PORTFOLIOS

5.1 INTRODUCTION

In this chapter of the handbook we present the optimization of the mean-
variance Markowitz portfolio problem and related problems in a broad
sense. We will specifically talk about:

• Global Minimum Variance Portfolio

• Efficient Min-Risk Markowitz Portfolio

• Efficient Max-Return Markowitz Portfolio

• Efficient Frontier Calculation

• Maximum Sharpe Ratio Portfolio

• Feasible Set Calculation

Section 2 introduces the standard Markowitz portfolio that minimizes the
sample covariance matrix as risk measure subject to the constraints of a
desired return, a fully invested budget, and of long-only positions. This
yields a risk optimimized portfolio on the efficient frontier. The objec-
tive function is quadratic and the constraints are linear. In section 3 we
consider the dual case: Maximizing the return and minimizing the risk.
The objective function is now linear and the constraints are quadratic. In
Section 4 we combine the view of minimizing risk and maximizing the
return. This yields the critical line algorithm (CLA) with risk aversion as a
control parameter. Varying the risk aversion we can go along the whole
efficient frontier. The endpoints of the efficient frontier are represented by
the global minimum risk portfolio and the global maximum return port-
folio are discussed in Section 5 Note, the standard CLA algorithm for the
mean-variance portfolio has a quadratic objective and linear constraints.

29

30 MEAN-VARIANCE PORTFOLIOS

Section 6 shows how to optimize he Max Sharpe Ratio Portfolio.

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.
The targetReturn for the equal weights portfolio is defined by the grand
mean of the portfolio scenarios, and the targetRisk is defined by the
grand variance of the portfolio. mu is the vector of the sample means of
the assets, and Sigma the sample covariance matrix.

5.2 FEASIBLE SET

A portfolio is a collection of assets investments. The amount of investment
in asset i is denoted by wi . The portfolio can then be characterized by the
vector w of all asset weights wi .
Each portfolio has its own properties such as its expected return

R :=w ′µ, (5.1)

where µ is the vector of expected returns of each asset, or its variance

σ2(w) :=w ′Σw , (5.2)

whereΣ is the covariance matrix between the individual daily asset returns.
Normally, a requirement of modern portfolio theory is that the portfolio
is fully invested. If we normalize the total investment volume to 1, we get
the constraint

w ′1=
N
∑

i=1

wi = 1 (5.3)

Furthermore, investments in portfolio theory are normally assumed to
be long-only, i.e. short selling is not allowed. This leads to the additional
constraint

wi ≥ 0∀i ∈ {1, ..., N } (5.4)

For models that allow short selling see chapter ...
These constraints create a finite volume inside the N-dimensional vector
space that is created by all possible w -vectors. This volume is called the

5.2. FEASIBLE SET 31

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Mean−Variance Hull

Covariance Risk

R
et

ur
ns

Assets

FIGURE 5.1: Feasible set and the positions of individual assets inside the set. The assets are
members of the LPP2005 index.

feasible set of portfolios. The frontier of the feasible set is called the hull.
The feasible set and the hull are often projected onto the 2-dimensional
plane spanned by the portfolio variance and the expected return. The fea-
sible set of all allowed portfolios of the Swiss pension fund index LPP2005
is depicted in figure 5.1.

32 MEAN-VARIANCE PORTFOLIOS

5.3 GLOBAL MINIMUM VARIANCE PORFOLIO

Harry Markowitz proposed 1952 in his article Portfolio selection* refer-
ence to identify the riskiness of an asset with the variance of its returns. It
is the simplest established risk measure and for that reason the basis for
the traditional portfolio theory.
We already saw the variance of the portfolio returns in equation 5.2. The
simplest optimized portfolio within our investment boundaries is the
Global Minimum Variance Portfolio (in short MVGLOB). This is the port-
folio with the lowest variance achievable. Since the variance is quadratic
in portfolio weights, we can use a quadratic optimization model:

min
w

w ′Σw (5.5)

s .t .

1′w = 1

wi ≥ 0

To estimate the covariance matrix Σ, we will use the sample covariance
estimate:

Σi , j :=
1

n −1

S
∑

s=1

(X i ,s − X̄ i)(X j ,s − X̄ j) (5.6)

For other covariance estimation methods, see chapter
The R/AMPL Model File is then described by introducing the parameters
N and Σ and variables wi , the objective function and the constraints of
equation 5.5:

> modelMVGLOB <- c(

"param N ;",

"param Sigma{1..N,1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] >= 1 ;")

> amplModelFile(model=modelMVGLOB, project="myPortfolio")

Note that the wi ≥ 0-constraint is formulated directly in the introduction
of w . We also specified the initial value of w to be the equal weights port-
folio since this portfolio is alreay inside the feasible set. This initialization
reduces the solving time , especially for very large portfolios.

The R/AMPL Run File must then specifiy the solver, optimize the objective,
and print the weights into a text-file. As mentioned, our objective is a

5.3. GLOBAL MINIMUM VARIANCE PORFOLIO 33

quadratic problem, therefore we choose to use the solver cplex that is
able to solve linear and quadratic problems efficiently. Our run-file now
consists of the specification of the solver, the model file and the data file,
and the solve and the print command.

> runMVGLOB <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMVGLOB, project="myPortfolio")

In fact, this R/AMPL Run File is only dependent on the specific model
in terms of the general objective form, i.e. it can be used for every other
linear/quadratic portfolio problem. Therefore, we will continue to use
this run file for every other problem of that form instead of always formu-
lating a new run file. In section , a run file for non-linear problems will be
introduced in the same manner.
For the AMPL Data File, we have to specify the parameters (N andΣ) from
the model file.

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelMVGLOB)

[1] "N" "Sigma"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> dataMVGLOB <- dataAUTO(modelMVGLOB)

> amplDataFile(data=dataMVGLOB, project="myPortfolio")

The R-function cov calculates the sample covariance matrix using formula
5.6.
We then optimize the MVGLOB Portfolio

> system("ampl myPortfolio.run > myPortfolio.out")

and extract the weights:

> weightsMVGLOB <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMVGLOB) <- colnames(Scenarios)

> weightsMVGLOB

SBI SPI SII LMI MPI ALT

0.355437 0.000000 0.089050 0.489347 0.002576 0.063590

Finally, we summarize our results:

> mu <- colMeans(Scenarios)

> SummaryMVGLOB <- c(

TargetReturn = mu %*% weightsMVGLOB,

CovarianceRisk = sqrt (weightsMVGLOB %*% Sigma %*% weightsMVGLOB),

HerfindahlIndex = 1 - weightsMVGLOB %*% weightsMVGLOB)

> SummaryMVGLOB

34 MEAN-VARIANCE PORTFOLIOS

TargetReturn CovarianceRisk HerfindahlIndex

0.010455 0.098623 0.622224

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Minimum Variance Portfolio

Covariance Risk

R
et

ur
ns

●

● Min−Var portfolio

FIGURE 5.2: Feasible set and the position of minimum variance portfolio.

5.4. THE EFFICIENT MINIMUM VARIANCE PORTFOLIO 35

5.4 THE EFFICIENT MINIMUM VARIANCE PORTFOLIO

The standard model in portfolio design is the Efficient Minimum Variance
Portfolio (MV1),also called Mean-Variance Portfolio. The model minimizes
the sample covariance risk Σ for a desired predefined target return r :

min
w

w ′Σw (5.7)

s .t .

µ′w ≥ r

1′w = 1

wi ≥ 0

The R/AMPL model file is similar to the MVGLOB-model except that the
parameters µ and r as well as an additional constraint have to be added:

> modelMV1 <- c(

"param N ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelMV1, project="myPortfolio")

The AMPL run file stays exactly the same as for the MVGLOB-portfolio:

> runMV1 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMV1, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file where we
only have to add the values forµ and r since N andΣ are already specified:

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelMV1)

[1] "N" "mu" "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> dataMV1 <- dataAUTO(modelMV1)

> amplDataFile(data=dataMV1, project="myPortfolio")

36 MEAN-VARIANCE PORTFOLIOS

Optimize the Portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV1 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMV1) <- colnames(Scenarios)

Summarize the results:

> SummaryMV1 <- c(

TargetReturn = mu %*% weightsMV1,

CovarianceRisk = sqrt (weightsMV1 %*% Sigma %*% weightsMV1),

HerfindahlIndex = 1 - weightsMV1 %*% weightsMV1)

> SummaryMV1

TargetReturn CovarianceRisk HerfindahlIndex

0.043077 0.245088 0.661479

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Mean−Variance Portfolio

Covariance Risk

R
et

ur
ns

●

●

●

●

Min−Var portfolio
Efficient Mean−Var portfolio

FIGURE 5.3: Position of a Mean-Variance portfolio inside the feasible set.

5.5. EFFICIENT MAXIMUM RETURN PORTFOLIO 37

5.5 EFFICIENT MAXIMUM RETURN PORTFOLIO

Let us consider the portfolio optimization from the other way around: Fix
the risk and maximize the return. The problem in equation 5.7 is then
transformed into the following optimization problem:

max
w
µ′w (5.8)

s .t .

w ′Σw ≤σ2

1′w = 1

wi ≥ 0

The R/AMPL model file for a single maximum return mean-variance port-
folio is now given by:

> modelMV2 <- c(

"param N ;",

"param targetRisk ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"maximize Objective: sum{i in 1..N} mu[i] * w[i] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Risk: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] <= targetRisk ;")

> amplModelFile(model=modelMV2, project="myPortfolio")

The R/AMPL run file is unchanged

> runMV2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runMV2, "myPortfolio")

Instead of the target return, the R/AMPL data file now needs the target risk.
In this example, we set the target risk to be the variance of the portfolio
calculated from the MV1 model:

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelMV2)

[1] "N" "targetRisk" "mu" "Sigma"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetRisk <- (weightsMV1 %*% Sigma %*% weightsMV1)[1]

38 MEAN-VARIANCE PORTFOLIOS

> dataMV2 <- dataAUTO(modelMV2)

> amplDataFile(data=dataMV2, project="myPortfolio")

Optimize the Portfolio:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMV2) <- colnames(Scenarios)

The weights for this portfolio should be the same as those for the mean-
variance portfolio:

> rbind(MV1 = weightsMV1, MV2 = weightsMV2)

SBI SPI SII LMI MPI ALT

MV1 0 0.008628 0.25432 0.33577 0 0.40128

MV2 0 0.008627 0.25432 0.33577 0 0.40128

and as exptected, this is true.

5.6. EQUI-DISTANT RETURN FRONTIER PORTFOLIO 39

5.6 EQUI-DISTANT RETURN FRONTIER PORTFOLIO

There are obviously many efficient portfolios, depending on the value
one puts on the expected return. The whole set of optimal portfolios is
called the efficient frontier. The way to compute the efficient frontier is
to loop in equi-distant return steps from the global minimum variance
portfolio up to the single asset portfolio with the asset that shows the
highest expected return. We call these portfolios the equi-distant return,
short EDR, portfolios.
In order execute our desired loop in AMPL, we have to add three new
parameters to the MV1-model file: The maximal target return (which is
just the maximum of µ), the minimal target return (which is the return of
the MVGLOB portfolio) and the number of frontier portfolios that should
be calculated.

> modelMVEDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"param targetReturn ;",

"param N ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelMVEDR, project="myPortfolio")

or in short:

> modelMVEDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

modelMV1)

> amplModelFile(model=modelMVEDR, project="myPortfolio")

The R/AMPL Run File has to be modified for this algorithm since now
we are looping over several target returns. In order to get a value for the
minReturn-parameter, we solve the problem first for a target return set to
−∞ in order to calculate the expected return of the minimum variance
portfolio. We then define the values for the minReturn- and maxReturn-
parameter. Afterwards, we introduce a loop and replace the value of r for
every iteration:

> runMVEDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let targetReturn := -999;",

40 MEAN-VARIANCE PORTFOLIOS

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMVEDR, project="myPortfolio")

Since we specify the values inside the R/AMPL run file, we do not have to
set any values for thetargetReturn-,minReturn- odermaxReturn-parameter.
If we want for instance 33 points on our efficient frontier, the R/AMPL
data file reads:

> Scenarios <- 100*LPP2005REC[,1:6]

> requiredData(modelMVEDR)

[1] "minReturn" "maxReturn" "nReturn" "N" "mu"

[6] "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- NA

> minReturn <- NA

> maxReturn <- NA

> nReturn <- 33

> dataMVEDR <- dataAUTO(modelMVEDR)

> amplDataFile(data=dataMVEDR, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVEDR <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMVEDR) <- colnames(Scenarios)

> rownames(weightsMVEDR) <- paste0("MVEDR-", 0:nReturn)

Next compute Returns and Risks for all portfolios along the frontier

> Returns <- weightsMVEDR%*%mu

> Risks <- sqrt(diag(weightsMVEDR %*% Sigma %*% t(weightsMVEDR)))

Plot Risk and Returns:

5.7. CRITICAL LINE ALGORITHM 41

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

MV EDR Algorithm

Covariance Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

Min−Var portfolio
Efficient Frontier portfolios
Max−Return portfolio

FIGURE 5.4: Equi-distant return frontier for the mean-variance Markowitz Portfolio

5.7 CRITICAL LINE ALGORITHM

The Critical Line Algorithm introduces multi-objective optimization meth-
ods. Its implementation can be found in the section

42 MEAN-VARIANCE PORTFOLIOS

5.8 MAXIMUM SHARPE RATIO PORTFOLIO

The Maximum Sharpe Ratio portfolio is the portfolio on the efficient
frontier with the highest reward/risk ratio. It can be found by solving the
following optimization problem:

max
w

µ′w
p

w ′Σw
(5.9)

s .t .

1′w = 1

wi ≥ 0

We can straightforward implement this problem in AMPL.
R/AMPL Model File:

> modelSHARPE <- c(

"param N ;",

"param mu{1..N};",

"param Sigma{1..N, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"maximize Objective: sum{k in 1..N} mu[k] * w[k] /",

"sqrt (sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j]) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;")

> amplModelFile(model=modelSHARPE, project="myPortfolio")

Since the portfolio program has become a non-linear optimization pro-
gram, we use the MINOS solver. Thus the specified solver in the AMPL
run file has to be replaced:

> runSHARPE <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runSHARPE, project="myPortfolio")

Since the Sharpe Ratio model file does not require additional parameters,
we can generate and save the R/AMPL data file:

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelSHARPE)

[1] "N" "mu" "Sigma"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> dataSHARPE <- dataAUTO(modelSHARPE)

> amplDataFile(data=dataAUTO(modelSHARPE), project="myPortfolio")

5.8. MAXIMUM SHARPE RATIO PORTFOLIO 43

Solve the Portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsSHARPE <- as.numeric(scan("myPortfolio.txt"))

> names(weightsSHARPE) <- colnames(Scenarios)

The Sharpe-Ratio takes the value

> sharpeReturn <- (mu %*% weightsSHARPE)[1]

> sharpeRisk <- sqrt(weightsSHARPE %*% Sigma %*% weightsSHARPE)[1]

> sharpeRatio <- sharpeReturn / sharpeRisk

> sharpeRatio

[1] 0.18471

Summarize the result:

> SummarySHARPE <- c(

TargetReturn = mu %*% weightsSHARPE,

CovarianceRisk = sqrt (weightsSHARPE %*% Sigma %*% weightsSHARPE),

HerfindahlIndex = 1 - weightsSHARPE %*% weightsSHARPE)

> SummarySHARPE

TargetReturn CovarianceRisk HerfindahlIndex

0.028323 0.153339 0.577287

Note that the Sharpe ratio portfolio lies on the efficient frontier:

Plot the Risk/Reward Diagram:

44 MEAN-VARIANCE PORTFOLIOS

0.0 0.2 0.4 0.6

0.
00

0.
02

0.
04

0.
06

0.
08

Sharpe Ratio Portfolio

Covariance Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

Min−Var portfolio
Efficient Frontier portfolios
Max−Return portfolio
Sharpe−Ratio portfolio

FIGURE 5.5: Position of the Sharpe-Ratio portfolio

●

●

●

●

●

●

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.1 0.2 0.3 0.4 0.5

0.
12

0.
14

0.
16

0.
18

Sharpe Ratio along Efficient Frontier

Covariance Risk

R
at

io
s

●

●

●

●

●

●

●

Min−Var portfolio
Efficient Frontier portfolios
Max−Return portfolio
Sharpe−Ratio portfolio

FIGURE 5.6: Sharpe-Ratios along the efficient frontier

5.9. QUADRATIC SHARPE-RATIO PORTFOLIO 45

5.9 QUADRATIC SHARPE-RATIO PORTFOLIO

You may have noticed that the problem in equation 5.9 is convex, but
non-linear. In order to solve it, minos uses less efficient solving methods
than achievable for linear or quadratic problems. Stoyanev, Rachev and
Fabozzi showed that the optimization problem in equation 5.9 can easily
be transformed into the following quadratic problem in order to reduce
calculation time:

min
w ,t

w ′Σw (5.10)

s .t .

1′w = t

µ′w = 1

wi ≥ 0

t ≥ 0

The Sharpe-Ratio portfolio is then given by w /t .
Again, we can go straightforward to implementing this problem in AMPL:
R/AMPL model file:

> modelSHARPE2 <- c(

"param N ;",

"param mu{1..(N+1)};",

"param Sigma{1..(N+1), 1..(N+1)} ;",

"var w{1..N} >= 0, default 1/N ;",

"var t >= 0 ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j];",

"subject to Reward : sum{k in 1..N} mu[k] * w[k] = 1 ;",

"subject to Budget: sum{i in 1..N} w[i] = t ;")

> amplModelFile(model=modelSHARPE2, project="myPortfolio")

R/AMPL run file:

> runSHARPE2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m]/t > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runSHARPE2, project="myPortfolio")

R/AMPL data file:

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelSHARPE2)

[1] "N" "mu" "Sigma"

46 MEAN-VARIANCE PORTFOLIOS

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> dataSHARPE2 <- dataAUTO(modelSHARPE2)

> amplDataFile(data=dataAUTO(modelSHARPE2), project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsSHARPE2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsSHARPE2) <- colnames(Scenarios)

> rbind(weightsSHARPE,weightsSHARPE2)

SBI SPI SII LMI MPI ALT

weightsSHARPE 0 0.000469 0.1824 0.57529 0 0.24185

weightsSHARPE2 0 0.000469 0.1824 0.57529 0 0.24185

As expected, we get the same weights for the quadratic as for the non-linear
problem.

5.10. MEAN-VARIANCE HULL 47

5.10 MEAN-VARIANCE HULL

The Hull surrounds the feasible set. It consists of three parts:

• The efficient frontier

• The minimum variance locus

• The maximum variance locus

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Mean−Variance Markowitz Hull

Covariance Risk

R
et

ur
ns

Efficient Frontier
Min−Variance Locus
Max−Variance Locus

FIGURE 5.7: Max Sharpe Ratio or Tangency Mean-Variance Portfolio

The efficient frontier and the minimum variance locus can be easily calcu-
lated in one step. We optimize EDR portfolios, but now we start from the
minimum return portfolio, and go up to the maximum return portfolio.
Both portfolios consist of a single asset.

The calculation of the maximum variance locus is a bit more complicated:

48 MEAN-VARIANCE PORTFOLIOS

0.70 0.71 0.72 0.73 0.74 0.75 0.76

0.
06

0
0.

06
5

0.
07

0
0.

07
5

0.
08

0
0.

08
5

Blend of two assets

Covariance Risk

R
et

ur
n1

Assets

FIGURE 5.8: Blend between two individual assets.

Blends

Blends are portfolios that are a combination of two assets.
Since the variance is a convex risk measure, every combination of two
blends cannot have a higher variance than both of the blends alone. This
means that the maximum variance locus will only consist of blends. The
union of the pairwise solutions then yields the rhs of the hull. This is also
evident in figure 5.9:

Implementation of the Hull-calculation algorithm

Text....
The R/AMPL Model File and R/AMPL Run File are exactly like the ones
from the equidistant return frontier:

> modelMVMINHULL <- c(

"param minReturn ;",

"param maxReturn ;",

5.10. MEAN-VARIANCE HULL 49

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Mean−Variance Markowitz Hull

Covariance Risk

R
et

ur
ns

FIGURE 5.9: All blends inside the feasible set.

"param nReturn ;",

modelMV1)

> amplModelFile(model=modelMVMINHULL, project="myPortfolio")

The R/AMPL Run File:

> runMVMINHULL <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMVMINHULL, project="myPortfolio")

The difference between both calculations is that this time we are calculat-
ing the locus and the frontier at once. We therefore set minReturn to be

50 MEAN-VARIANCE PORTFOLIOS

equal to min(mu). The R/AMPL Data File looks like this:

> Scenarios <- 100*LPP2005REC[, 1:6]

> requiredData(modelMVMINHULL)

[1] "minReturn" "maxReturn" "nReturn" "N" "mu"

[6] "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

> targetReturn <- NA

> minReturn <- min(mu)

> maxReturn <- max(mu)

> nReturn <- 33

> dataMVMINHULL <- dataAUTO(modelMVMINHULL)

> amplDataFile(data=dataMVMINHULL, project="myPortfolio")

Optimize the Portfolio and extract the Weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVMINHULL <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=6)

> colnames(weightsMVMINHULL) <- colnames(Scenarios)

> rownames(weightsMVMINHULL) <- paste0("MINHULL-", 1:dim(weightsMVMINHULL)[1])

Next we compute the maximum variance locus of the Markowitz portfolio
by the maximum risk intersection of all pairwise portfolios

> markowitzHull <- function(mu, Sigma, Return, Risk) {

Minimum Risks:

minRisks <- Risk

Returns <- risks <- Return

Maximum Risks:

maxRisks <- rep(-Inf, length(Returns))

nAssets <- ncol(Sigma)

for (i in 1:(nAssets - 1)) {

for (j in (i + 1):nAssets) {

mu2 <- mu[c(i, j)]

Sigma2 <- Sigma[c(i, j), c(i, j)]

Index <- which(Returns >= min(mu2) & Returns <= max(mu2))

if (length(Index) > 0) {

Index <- (1:length(Returns))[Index]

for (k in Index) {

weights <- (Returns[k] - mu2[2])/(mu2[1] - mu2[2])

weights <- c(weights, 1 - weights)

Risk <- sqrt(weights %*% Sigma2 %*% weights)[[1]]

maxRisks[k] <- max(maxRisks[k], Risk) }

}

}

}

Hull:

risk <- c(minRisks, rev(maxRisks[-1])[-1], minRisks[1])

return <- c(Returns, rev(Returns[-1])[-1], Returns[1])

hull <- cbind(Risks = risk, Returns = return)

Return Value:

hull

}

5.10. MEAN-VARIANCE HULL 51

The input for the markowitzHull() are the column means (mu) oa fthe
assets, the covariance matrix Sigma, and the Return and Risk values along
the minimum variance locus and the efficient frontier.
Compute measures:

> Return <- Risk <- NULL

> for (i in 0:nReturn) {

Return <- c(Return, mu %*% weightsMVMINHULL[i+1,])

Risk <- c(Risk, sqrt(weightsMVMINHULL[i+1,] %*% Sigma %*% weightsMVMINHULL[i+1,])) }

> hull <- markowitzHull(mu, Sigma, Return, Risk)

52 MEAN-VARIANCE PORTFOLIOS

CHAPTER 6

LOWER PARTIAL MOMENTS

6.1 INTRODUCTION

In this chapter we introduce portfolios with Lower Partial Moments risk
measures. Topics include:

• LPMNONLIN - Nonlinear Lower Partial Moments Portfolio

• LPMSHORTFLL - Mean-Shortfall Portfolio

• LPMSEMIVAR - Mean-SemiVariance Portfolio

• LPMQUAD - Generalized Quadratic Lower Partial Moments Portfo-
lio

Lower Partial Moments are risk measures that penalize returns below a cer-
tain threshold value. The use of such risk measure was already mentioned
by Markowitz [1952] in a reference to semi-standard deviation portfolios.
This was later formalized into a very general class of measures by Stone
[1973], and Petersen and Satchel [19xx].

The lower partial moments framework, as we use here in the following
was introduced by Fishburn [1977]. He defined the risk measure in the
continuous case as

LP Ma ,τ(f) = E [max(τ− x , 0)a] =

∫ τ

−∞
(τ− x)a f (x)d x

a is a positive parameter which represents the rate at which the deviations
below the threshold τ are penalized and f (x) is the distribution function
of the returns. In the discrete case we get

53

54 LOWER PARTIAL MOMENTS

LM Pa ,τ(x) =
1

m

m
∑

i=1

max(τ− x , 0)a

Usually one uses this risk measure for portfolio optimization in a stan-
dardized form, i.e. the risk is raised to the power of 1/a . The risk measure
for portfolio problem can now be posed as follows:

LP Ma ,τ(x , w) =
� 1

S

S
∑

s=1

max
�

0,τ−
N
∑

i=1

rs ,i wi

�a �1/a
(6.1)

Special cases are a = 0 representing the shortfall probability or Safety-First
model of Roy [1952]. a = 1 corresponds to the below target shortfall risk,
and a = 2 to the shortfall variance which is equivalent to the semi-variance
whenτ= E (x). Note, when a = 1, a linear programming formulation exists.
Note furthermore that the LPM is a convex risk measure only for a ≥ 1.
This formulation of the LPM portfolio is nonlinear and thus inefficiently
solvable. Nawrocki and Staples [1989] devised measures which transform
the LPM function to allow for a quadratic programming implementation
of the LPM portfolio. We will first present the nonlinear implementation of
the LPM portfolio in chapter 2, and afterwards compare it to the quadratic
implementation of Nawrocki and Staples.
Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package.

6.2. NONLINEAR LOWER PARTIAL MOMENTS PORTFOLIO 55

6.2 NONLINEAR LOWER PARTIAL MOMENTS PORTFOLIO

Using equation 6.1, the Mean-LPM portfolio problem can be formulated
as following:

min
w

� 1

S

S
∑

s=1

max
�

0,τ−
N
∑

i=1

rs ,i wi

�a �1/a

s .t .

1′w = 1

µ′w ≥ r

wi ≥ 0

We now construct the R/AMPL model file straightforward:

> modelLPMNONLIN <- c(

"# LPMNONLIN - Single Min-Risk Nonlinear LPM Portfolio:",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param a ;",

"param tau ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: (1/S * sum{s in 1..S} (max (tau -",

"(sum{i in 1..N} Scenarios[s,i] * w[i]) , 0))^a)^(1/a) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelLPMNONLIN, project="myPortfolio")

Since the obective is non-linear, we need to include a non-linear solver
such as minos in our R/AMPL run file (i.e. we could just use the run file
from the Sharpe portfolio implementation):

> runLPMNONLIN <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runLPMNONLIN, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. In this first
example we set τ= 0 and a = 1.

> Scenarios <- 100*LPP2005.RET[117:377, 1:6]

> requiredData(modelLPMNONLIN)

56 LOWER PARTIAL MOMENTS

[1] "N" "S" "Scenarios" "mu" "a"

[6] "tau" "targetReturn"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> a <- 1

> tau <- 0

> targetReturn <- mean(mu)

> dataLPMNONLIN <- dataAUTO(modelLPMNONLIN)

> amplDataFile(data=dataLPMNONLIN, project="myPortfolio")

Optimize the portfolio and extract the weights for a = 1:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsLPMNONLIN <- as.numeric(scan("myPortfolio.txt"))

> names(weightsLPMNONLIN) <- colnames(Scenarios)

> weightsLPMNONLIN

SBI SPI SII LMI MPI ALT

0.000000 0.005578 0.133504 0.472620 0.000000 0.388298

As expected, if we set a = 2, we get different weights:

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> a <- 2

> tau <- 0

> targetReturn <- mean(mu)

> dataLPMNONLIN <- dataAUTO(modelLPMNONLIN)

> amplDataFile(data=dataLPMNONLIN, project="myPortfolio")

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsLPMNONLIN <- as.numeric(scan("myPortfolio.txt"))

> names(weightsLPMNONLIN) <- colnames(Scenarios)

> weightsLPMNONLIN

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.29799 0.34011 0.00000 0.36190

6.3. LINEAR MEAN-SHORTFALL PORTFOLIO 57

6.3 LINEAR MEAN-SHORTFALL PORTFOLIO

If a = 1, equation 6.1 represents the below target shortfall portfolio. This
portfolio allows for a linear implementation:

min
w

1

S

S
∑

s=1

ds

s .t .

τ−
N
∑

i=1

wi ri ,s ≤ ds

1′w = 1

µ′w ≥ r

wi ≥ 0

ds ≥ 0

R/AMPL model file:

> modelLPMSHORTFALL <- c(

"# LPMSHORTFALL - Single Min-Risk Shortfall LPM Portfolio:",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param tau ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var d{1..S} >= 0 ;",

"minimize Objective: 1/S * sum{s in 1..S} d[s] ;",

"subject to Shortfall{s in 1..S}: tau- sum{i in 1..N} w[i] *Scenarios[s,i]<= d[s] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelLPMSHORTFALL, project="myPortfolio")

Since we now have a linear implementation, the R/AMPL run file is just
our standard linear run file:

> runLPMSHORTFALL <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runLPMSHORTFALL, project="myPortfolio")

Since all parameters are already specified, we can just create our R/AMPL
data file with τ= 0:

58 LOWER PARTIAL MOMENTS

> requiredData(modelLPMSHORTFALL)

[1] "N" "S" "Scenarios" "mu" "tau"

[6] "targetReturn"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> tau <- 0

> targetReturn <- mean(mu)

> dataLPMSHORTFALL <- dataAUTO(modelLPMSHORTFALL)

> amplDataFile(data=dataLPMSHORTFALL, project="myPortfolio")

Optimize the portfolio and extract the weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsLPMSHORTFALL <- as.numeric(scan("myPortfolio.txt"))

> names(weightsLPMSHORTFALL) <- colnames(Scenarios)

> weightsLPMSHORTFALL

SBI SPI SII LMI MPI ALT

0.000000 0.005578 0.133504 0.472620 0.000000 0.388298

As expected, the weights are the same as in the nonlinear approach with
a = 1.

6.4. MEAN-SEMIVARIANCE PORTFOLIO 59

6.4 MEAN-SEMIVARIANCE PORTFOLIO

If a = 2, equation 6.1 represents the one-sided semivariance portfolio.
This portfolio allows for a quadratic implementation:

min
w

1

S

S
∑

s=1

d 2
s

s .t .

τ−
N
∑

i=1

wi ri ,s ≤ ds

1′w = 1

µ′w ≥ r

wi ≥ 0

ds ≥ 0

R/AMPL model file:

> modelLPMSEMIVAR <- c(

"# LPMSEMIVAR - Single Min-Risk SEMIVAR LPM Portfolio:",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param tau ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var d{1..S} >= 0 ;",

"minimize Objective: 1/S * sum{s in 1..S} d[s]*d[s] ;",

"subject to Semivar{s in 1..S}: tau- sum{i in 1..N} w[i] *Scenarios[s,i]<= d[s] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelLPMSEMIVAR, project="myPortfolio")

Again, we can just use our usual linear R/AMPL run file:

> runLPMSEMIVAR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runLPMSEMIVAR, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file with τ= 0:

> requiredData(modelLPMSEMIVAR)

60 LOWER PARTIAL MOMENTS

[1] "N" "S" "Scenarios" "mu" "tau"

[6] "targetReturn"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> tau <- 0

> targetReturn <- mean(mu)

> dataLPMSEMIVAR <- dataAUTO(modelLPMSEMIVAR)

> amplDataFile(data=dataLPMSEMIVAR, project="myPortfolio")

Optimize the portfolio and extract the weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsLPMSEMIVAR <- as.numeric(scan("myPortfolio.txt"))

> names(weightsLPMSEMIVAR) <- colnames(Scenarios)

> weightsLPMSEMIVAR

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.29799 0.34012 0.00000 0.36190

As expected, the weights are the same as in the nonlinear approach with
a = 2.

6.5. QUADRATIC LOWER PARTIAL MOMENTS PORTFOLIO 61

6.5 QUADRATIC LOWER PARTIAL MOMENTS PORTFOLIO

Taking inspiration from the quadratic Markowitz portfolio, Nawrocki
(1991,1992) proposed a new approach to calculating the LPM of a portfolio
that includes the co-lower partial moments of the individual assets.
The co-lower partial moment (CLPM) between two assets is defined as

C LP Ma ,τ(f (xi , x j))

= E [max(τ− xi , 0)a−1(τ− x j)]

=

∫ τ

−∞

∫ ∞

−∞
(τ− xi)

a−1(τ− x j) f (xi) f (xi , x j)d xi d x j

In the discrete case we get

C LM Pa ,τ(xi , x j) =
1

m

m
∑

i=1

max(τ− x , 0)a−1(τ− x)

The LPM of the portfolio is now defined as

LP Ma ,τ

=
N
∑

i=1

N
∑

j=1

wi w j C LM Pa ,τ(xi , x j)

=w T ·C LM Pa ,τ ·w

where C LM Pa ,τ is the matrix of all C LM Pa ,τ(xi , x j). For a = 2, this ap-
proach is equivalent to the nonlinear formulation of equation 6.1.
We can now directly use the Mean-Variance portfolio model and replace
the Σ-matrix with the C LM Pa ,τ-matrix. The R/AMPL model file looks as
following:

> modelLPMQUAD <- c(

"param N ;",

"param mu{1..N} ;",

"param CLMP{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * CLMP[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelLPMQUAD, project="myPortfolio")

62 LOWER PARTIAL MOMENTS

Note that this is exactly the same model file as for the mean-variance
portfolio, we just renamed the Σ-matrix to C LM P .
Consequently we can again just use the linear R/AMPL run file from the
Markowitz approach:

> runLPMQUAD <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runLPMQUAD, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. The C LM Pa ,τ-
matrix can be calculated with the ...function....
Note that it might be reasonable to normalize the C LM P -matrix for nu-
merical stability, since for high values for a , its entries become very small:

> requiredData(modelLPMQUAD)

[1] "N" "mu" "CLMP" "targetReturn"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> tau <- 0

> a <- 2

> targetReturn <- mean(mu)

> CLMP <- assetsLPM(Scenarios,tau,a)$Sigma

> #NORMALIZE#

> CLMP <- CLMP/(det(CLMP))^(1/N)

> dataLPMQUAD <- dataAUTO(modelLPMQUAD)

> amplDataFile(data=dataLPMQUAD, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsLPMQUAD <- as.numeric(scan("myPortfolio.txt"))

> names(weightsLPMQUAD) <- colnames(Scenarios)

> weightsLPMQUAD

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.30934 0.33097 0.00000 0.35969

As expected, the weights are the same as for the semi-variance approach
(up to the second digit):

> weightsLPMSEMIVAR

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.29799 0.34012 0.00000 0.36190

IMPORTANT: If a gets to big, the CLMP-matrix will become degenerate,
and cplex is not able to solve the problem anymore.

6.6. DEPENDENCE ON a 63

● ●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

1 2 3 4 5 6

−
7e

−
04

−
4e

−
04

−
1e

−
04

LPM Portfolio

a

Ta
rg

et
 R

et
ur

n
E

rr
or

 %

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

1 2 3 4 5 6

0.
23

5
0.

25
0

0.
26

5

LPM Portfolio

a
C

ov
ar

ia
nc

e
R

is
k

●

●

● ●

●

●

●

●

1 2 3 4 5 6

0.
0

0.
4

0.
8

1 2 3 4 5 6

0.
0

0.
4

0.
8

6.6 DEPENDENCE ON a

We will now compare the different approaches for different a.
To do..........
Plot the results as a function of a :

64 LOWER PARTIAL MOMENTS

0.2 0.4 0.6 0.8

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Nonlinear LPM Implementation

Risks

R
et

ur
ns

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

a=1
a=2
a=3
a=4
a=5

0.2 0.4 0.6 0.8

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Quadratic LPM Implementation

Risks

R
et

ur
ns

●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

a=1
a=2
a=3
a=4
a=5

PART III

ROBUST PORTFOLIO ESTIMATIONS

65

6.6. DEPENDENCE ON a 67

CHAPTER 7

COVARIANCE ROBUSTIFICATION

Mean-variance portfolios constructed using the sample mean and covari-
ance matrix of asset returns often perform poorly out-of-sample due to
estimation errors in the covariance matrix. As a consequence, minimum-
variance portfolios may yield unstable weights that fluctuate substantially
over time. This loss of stability may also lead to extreme portfolio weights
and dramatic swings in weights with only minor changes in expected
returns or the covariance matrix. Consequentially, we observe frequent
re-balancing and excessive transaction costs.
Robust statistics provides an alternative approach to classical statistical
methods. The idea behind robust statistics is to produce estimators that
are not unduly affected by small departures from model assumptions. In
this chapter we will introduce several robust covariance estimators that
may reduce estimation errors in the covariance matrix.

69

70 COVARIANCE ROBUSTIFICATION

7.1 INTRODUCTION

As discussed above, the efficient mean-variance portfolio model is defined
as following:

min
w

w ′Σw (7.1)

s .t .

1′w = 1

µ′w = r

wi ≥ 0

where Σ is the covariance matrix. When estimating the covariance matrix,
we calculated the sample covariance matrix that is defined as

Σi , j =
1

n −1

S
∑

s=1

(X i ,s − X̄ i)(X j ,s − X̄ j) (7.2)

The calculation is implemented in the function cov that we used. This
estimator is optimal when the returns come from a multivariate normal
distributions. For other distributions and in the presence of outliers, this
estimator is known to be notoriously error-prone. In addition, the mean-
variance portfolio model is very sensitive to the covariance estimates.
Therefore, a better approach is to apply robust covariance estimation
methods.
Our AMPL model file calculating the mean-variance portfolio looks like
this:

> modelMV1 <- c(

"param N ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

Since the estimation of the covariance matrix plays no role in our model
file, we obviously just have to replace the covariance matrix in our data
file in order to work with a more robust estimator of the covariance matrix.
For example, if we want to use Spearman’s rank estimator, we just use the
implemented R function and replace the covariance matrix in the data
file:

7.1. INTRODUCTION 71

> #Scenarios <- 100*LPP2005REC[,1:6]

>

> data <- read.csv(file="assetReturns.csv",header=T,sep=",",row.names=)

> row.names(data)=data[,1]

> Scenarios <- as.timeSeries(data[1509:1809,2:dim(data)[2]])

> requiredData(modelMV1)

[1] "N" "mu" "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> Sigma <- cov(Scenarios, method="spearman")

> dataMV1 <- dataAUTO(modelMV1)

> amplDataFile(data=dataMV1, project="myPortfolio")

In the following, we will present several ways to calculate a robust covari-
ance matrix. The robust matrix can always be inserted into the data file as
presented in this example. The following approaches are discusssed:

• Rank Correlation Estimators

• High Breakdown Point Estimators

• Shrinkage Estimators

• Bayesian Change-Point Estimator

72 COVARIANCE ROBUSTIFICATION

7.2 RANK CORRELATION ESTIMATORS

The sample covariance relies on the normality of the sample points, but
asset returns are in general not normally distributed. Instead of using the
measured returns, rank correlation estimators use the rank of the returns
to compute the correlation and are thus less dependent on the underlying
distribution of the returns.
The covariance can between two assets can be written as a function of the
correlation function ρ(X i , X j):

σi , j =
ρ(X i , X j)

σi ,σ j
(7.3)

Pearson’s correlation estimator relies on an assumed underlying normal
distribution. Rank correlation estimators are more conservative and make
no assumptions about the underlying distribution. The most prominent
ones are Spearman’s and Kendall’s correlation estimators.
The Spearman correlation is computed from:

ρS (X i , X j) =
1/(N −1)

∑S
s=1(rg(X i ,s)− (N +1)/2)(rg(X j ,s)− (N +1)/2)

σrgi
,σrg j

(7.4)

The Kendall correlation is computed from:

τS (X i , X j) =
1

N (N −1)/2

∑

1≤s<t≤N

sgn(X i ,s −X i ,t) · sgn(X j ,s −X j ,t) (7.5)

The cov-function from the stats-package includes methods to compute
Spearman’s r resp. Kendall’s τ. It is quite easy to compute the correspond-
ing covariance method from these quantities:

> SpearmanR <- cov(Scenarios, method="spearman")

> rhoSpearman <- t(SpearmanR/sqrt(diag(SpearmanR)))/sqrt(diag(SpearmanR))

> SigmaSpearman <- t(rhoSpearman*sqrt(diag(cov(Scenarios))))*sqrt(diag(cov(Scenarios)))

> Kendalltau <- cov(Scenarios, method="kendall")

> rhoKendall <- t(Kendalltau/sqrt(diag(Kendalltau)))/sqrt(diag(Kendalltau))

> SigmaKendall <- t(rhoKendall*sqrt(diag(cov(Scenarios))))*sqrt(diag(cov(Scenarios)))

Risk/Reward Plot:

7.3. HIGH BREAKDOWN POINTS ESTIMATORS 73

0.6 0.8 1.0 1.2 1.4

−
0.

05
0.

00
0.

05
0.

10
0.

15

Covariance Risk

R
et

ur
ns

Rank Covariance Estimation

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

Kendall−Variance
Spearman−Variance

FIGURE 7.1: Efficient Mean-Variance portfolios that are optimized with Spearman- and
Kendall-covariance matrices.

7.3 HIGH BREAKDOWN POINTS ESTIMATORS

A common source for estimation errors in statistics are outliers. It is well
documented that even a single observation that deviates from the as-
sumed normal distribution could deteriorate the sample covariance es-
timator, i.e. the sample covariance is not robust against outliers. High
breakdown points estimators are designed to withstand a certain amount
of defective sample points.
Rousseeuw (1984) The Minimum Covariance Determinant Estimator (MCD)
for example finds the subset of data points that minimizes the determi-
nant of the sample covariance matrix. For a specific number h between
(S +N +1)/2 and S , the estimator finds the subset H0 with h data points
such that

H0 = arg min
H

det
�

cov(Xi |i ∈H)
�

(7.6)

74 COVARIANCE ROBUSTIFICATION

S
am

pl
e

K
en

da
ll

S
pe

ar
m

an

D
iff

.
S

am
pl

e−
K

en
da

ll

D
iff

.
S

am
pl

e−
S

pe
ar

m
an

Minimum variance portfolio distribution

w
ei

gh
ts

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 7.2: Comparison of the weight distribution of the minimum-variance portfolio
optimized with the sample covariance estimator, the Spearman estimator and the Kendall
estimator. Also the weight deviations of the Spearman and Kendall portfolio with respect to
the sample covariance portfolio are displayed.

where cov is the sample covariance estimator. Obviously, this estimator
does not work if we have more assets than data points.
Rousseeuw (1984) The Minimum Volume Ellipsoid Estimator (MVE) is
similar to the MCD estimator: It also minimizes the determinant of its
covariance matrix estimation C, but the C is subject to the following con-
straint:

max
t ∈Rp

S
∑

i=1

Θ
�

c 2− (XS − t)t C−1(XS − t)
�

≥ h (7.7)

where Θ(·) is the Heaviside function, c is a constant depending on N , and
h a number between S/2 and S determining the number of data points
that have to be included inside the ellipsoid.
Both estimators are included in the R-package MASS:

7.3. HIGH BREAKDOWN POINTS ESTIMATORS 75

> SigmaMCD <- MASS::cov.rob(x = Scenarios, method = "mcd", quantile.used =)$cov

> SigmaMVE <- MASS::cov.rob(x=Scenarios, method="mve")$cov

Another high breakpoint estimator is the Orthogonalized Gnanadesikan-
Kettenring Estimator (OGK). It uses eigenvalue decomposition and scaling
in order lessen the influence of outliers. The rrcov contains a function to
calculate the OGK estimate:

> SigmaOGK <- robustbase::covOGK(X = Scenarios, sigmamu = robustbase::scaleTau2)$cov

The Nearest Neighbor Variance Estimator (NNVE) was introduced by Wang
& Raftery in 2002. It measures the "outlyingness" of a data point by the
distance between the point and its K th nearest neighbor in order to avoid
defective data points. An implementation of the estimator can be found
in the R-package fAssets:

> require(fAssets)

> SigmaNNVE <- assetsMeanCov(x=Scenarios, method="nnve")$cov

Risk/Reward Plot:

76 COVARIANCE ROBUSTIFICATION

0.6 0.8 1.0 1.2 1.4

−
0.

05
0.

00
0.

05
0.

10
0.

15

Covariance Risk

R
et

ur
ns

High−Breakpoint Covariance Estimation

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

MCD−Variance
MVE−Variance
OGK−Variance
NNVE−Variance

FIGURE 7.3: Efficient Mean-Variance portfolios that are optimized with Spearman- and
Kendall-covariance matrices.

7.4 SHRINKAGE ESTIMATORS

If the number of time series records is small and the number of considered
assets increases, then the sample estimator of covariance becomes more
and more unstable. Specifically, it is possible to provide estimators that
improve considerably upon the maximum likelihood estimate in terms
of mean-squared error. Moreover, when the number of records is smaller
than the number of assets, the sample estimate of the covariance matrix
becomes singular.
A simple version of a shrinkage estimator of the covariance matrix is con-
structed as follows. We consider a convex combination of the empirical
estimator with some suitable chosen target, e.g. the diagonal matrix. Sub-
sequently, the mixing parameter is selected to maximize the expected
accuracy of the shrinked estimator. This can be done by cross-validation,
or by using an analytic estimate of the shrinkage intensity. Apart from
increased efficiency, the shrinkage estimate has the additional advantage

7.4. SHRINKAGE ESTIMATORS 77

S
am

pl
e

M
C

D

M
V

E

O
G

K

N
N

V
E

Minimum variance portfolio distribution

w
ei

gh
ts

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 7.4: Comparison of the weight distribution of the minimum-variance portfolio
optimized with the sample covariance estimator, the MCD, the MVE, the OGK and the NNVE
covariance estimator.

that it is always positive definite and well conditioned.
More sophisticated shrinkage estimators include the shrinkage estimator
by Schaefer and Strimmer or the bagged covariance estimator (Breiman
1996 Bagging Predictors). Both are implemented in the R-package fAs-

sets:

> require(fAssets)

> SigmaShrink <- assetsMeanCov(x=Scenarios, method="shrink")$cov

> SigmaBagged <- assetsMeanCov(x=Scenarios, method="bagged", baggedR=100)$cov

Risk/Reward Plot:

78 COVARIANCE ROBUSTIFICATION

D
iff

er
en

ce

S
am

pl
e−

M
C

D

D
iff

er
en

ce

S
am

pl
e−

M
V

E

D
iff

er
en

ce

S
am

pl
e−

O
G

K

D
iff

er
en

ce

S
am

pl
e−

N
N

V
E

Minimum variance portfolio deviations

w
ei

gh
ts

0.0

0.2

0.4

0.6

0.8

FIGURE 7.5: Comparison of the weight deviations of the minimum-variance portfolios that
were optimized with the MCD, the MVE, the OGK and the NNVE covariance estimator with
respect to the sample covariance estimator.

7.4. SHRINKAGE ESTIMATORS 79

0.6 0.8 1.0 1.2 1.4

−
0.

05
0.

00
0.

05
0.

10
0.

15

Covariance Risk

R
et

ur
ns

Shrinkage Covariance Estimation

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

Schaefer−Strimmer−Variance
Bagged Variance

FIGURE 7.6: Efficient Mean-Variance portfolios that are optimized using the shrinkage esti-
mator by Schaefer and Strimmer, and the bootstrap estimator by Breiman.

80 COVARIANCE ROBUSTIFICATION

S
am

pl
e

S
ch

ae
fe

r
S

tr
im

m
er

B
ag

ge
d

D
iff

er
en

ce

S
am

pl
e−

S
ch

ae
fe

r−
S

tr
im

m
er

D
iff

er
en

ce

S
am

pl
e−

B
ag

ge
d

Minimum variance portfolio distribution

w
ei

gh
ts

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 7.7: Comparison of the weight distribution of the minimum-variance portfolio opti-
mized with the sample covariance estimator, the MCD, MVE and OGK covariance estimator.
Also the weight deviations of the MCD, MVE and OGK portfolio with respect to the sample
covariance portfolio are displayed.

7.4. SHRINKAGE ESTIMATORS 81

CHAPTER 8

M AND S ESTIMATORS

8.1 INTRODUCTION

Motivation for this work, see abstract from:

Portfolio Selection with Robust Estimation
Victor DeMiguel, Francisco J. Nogales
Submitted to Operations Research Manuscript OPRE-2007-02-106

As meantioned before, mean-variance portfolios constructed using the
sample mean and covariance matrix of asset returns perform poorly out-
of-sample due to estimation error. Moreover, it is commonly accepted that
estimation error in the sample mean is much larger than in the sample
covariance matrix. For this reason, practitioners and researchers have re-
cently focused on the minimum-variance portfolio, which relies solely on
estimates of the covariance matrix, and thus, usually performs better out-
of-sample. But even the minimum-variance portfolios are quite sensitive
to estimation error and have unstable weights that fluctuate substantially
over time. In this paper, we propose a class of portfolios that have better
stability properties than the traditional minimum-variance portfolios.
The proposed portfolios are constructed using certain robust estimators
and can be computed by solving a single nonlinear program, where robust
estimation and portfolio optimization are performed in a single step. We
show analytically that the resulting portfolio weights are less sensitive
to changes in the asset-return distribution than those of the traditional
minimum-variance portfolios. Moreover, our numerical results on simu-
lated and empirical data confirm that the proposed portfolios are more
stable than the traditional minimum-variance portfolios, while preserving
(or slightly improving) their relatively good out-of-sample performance.

83

84 M AND S ESTIMATORS

8.2 M PORTFOLIOS

The first class of portfolios proposed by DeMiguel and Nogales is based
on the robust M-estimators. For a given portfolio the M-estimator for the
portfolio’s risk is

min
w ,m

1

S

S
∑

i=1

ρ(w ′rs −m) (8.1)

s .t .

1′w = 1

µ′w = r

w ≥ 0

where the loss function ρ is a convex symmetric function with an unique
minimum at zero, and m is the M-estimator of the portfolio return

m = arg min
m

1

S

S
∑

i=1

ρ(w ′rs −m) (8.2)

Note, particular cases of M-estimators are the sample mean and variance,
which are obtained for ρ(r) = r 2/2, and the median and MAD portfolio,
for ρ(r) = |r |).
Loss functions that can be used to compute M-estimators include: Lp ,
L1, L2, Huber, Cauchy, Welsch, see DeMiguel and Nogales.

8.3 HUBER LOSS

As an example, we present the implementation of the M-estimator portfo-
lio under Huber loss because of its good out-of-sample performance. The
Huber loss function looks as following:

ρδ(x) =

¨

1
2 x 2 for|x | ≤δ,

δ(|x | − 1
2δ) otherwise.

(8.3)

To receive our optimization model, we can go straightforward and plug
the loss function into equation 8.5. In order to implement this model
in AMPL, we have to rely on piecewise linear programming in order to
model the Huber loss function. The implementation of piecewise linear
functions in AMPL can be done quite easily, but we need a little trick to
account for the quadratic part of the Huber loss:
AMPL allows to multiply a defined function with different factors, sep-
arated through breakpoints. Since the Huber loss contains a linear part

8.3. HUBER LOSS 85

and a quadratic part, i.e. we have two different types of functions, we can
separate these two parts into a sum and write it as following:

ρδ(x) =

¨

1 · 1
2 x 2 for|x | ≤δ,

0 · 1
2 x 2 otherwise,

+

¨

0 ·δ(|x | − 1
2δ) for|x | ≤δ,

1 ·δ(|x | − 1
2δ) otherwise,

(8.4)

i.e. we now have two different piecewise defined functions with a break-
point at the same point δ. To implement this in AMPL is quite easy with
the syntax for piecewise linear functions. Such a function is defined in
AMPL as following:

> "<<Break; slope1, slope2 >> x"

This expression describes a piecewise linear function such as in figure
8.1. Inside the braces, we have three parameters: The slope of the first
linear segment, the slope of the second linear segment, and the breakpoint,
where the first segment ends and the second starts. The expression inside
the brackets is then multiplied with the variable.
If we also linearize |w ′rs −m |, we then get the following optimization
problem:

min
w ,m ,x

1

S

S
∑

i=1

ρ(xs) (8.5)

s .t .

1′w = 1

µ′w = r

w ≥ 0

w ′rs −m ≤ xs

−w ′rs +m ≤ xs

The AMPL model file then looks as following:

> modelHuber <- c(

"param N ;",

"param S ;",

"param delta ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"var m ;",

"minimize Objective: sum{s in 1..S} (",

" (<<delta; 1, 0 >> x[s])^2 *0.5",

86 M AND S ESTIMATORS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Piece−wise linear function

x

Break
Slope1

Slope2

FIGURE 8.1: An example of a piecewise linear function-

"+ (<<delta; 0, 1 >> x[s])*delta)/S ;",

"subject to Budget: sum{n in 1..N} w[n] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to Minus {k in 1..S}: sum{n in 1..N} Scenarios[k,n] * w[n] - m - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} Scenarios[k,n] * w[n] - m + x[k] >= 0 ;")

> amplModelFile(model=modelHuber, project="myPortfolio")

Since the function is non-linear, we use the solver minos. R/AMPL run
file:

> runHuber <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos ;",

"solve ;",

"for {o in 1..N} printf \"%16.6f\", w[o] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runHuber, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. The addi-

8.3. HUBER LOSS 87

tional parameter we need to specify is delta:

> requiredData(modelHuber)

[1] "N" "S" "delta" "mu" "Scenarios"

[6] "targetReturn"

> #Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> Scenarios <- 100*LPP2005.RET[117:217, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> delta <- 0.3*mean(abs(Scenarios))

> dataHuber <- dataAUTO(modelHuber)

> amplDataFile(data=dataHuber, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsHuber <- as.numeric(scan("myPortfolio.txt"))

> names(weightsHuber) <- colnames(Scenarios)

0.2 0.4 0.6 0.8 1.0

−
0.

04
−

0.
02

0.
00

0.
01

0.
02

0.
03

Minimum Variance Portfolio

Covariance Risk

R
et

ur
ns

●

● Huber−loss portfolio

FIGURE 8.2: Feasible set and the position of minimum variance portfolio.

88 M AND S ESTIMATORS

CALCULATE FULL TIME SERIES!

8.4. S PORTFOLIOS 89

8.4 S PORTFOLIOS

The second class of portfolio policies proposed by DeMiguel and Nogales
is based on the robust S-estimators. The main advantage of S-estimators
is that they are equivariant with respect to scale; that is, multiplying the
whole dataset by a constant does not change the value of the S-estimator.
This is not the case for the M-estimators. The S-estimators of portfolio
return and risk are defined as the values of m and s that solve the following
optimization problem:

min
m ,s

s

s .t .

1

S

S
∑

i=1

ρ(
w ′rs −m

s
) = K

where s is the loss function and K is the expectation of this loss function
evaluated at a standard normal variable z , that is, K = E (ρ(z)). Note that
the portfolio eturn deviations, w rs −m , are scaled by the S-estimator for
risk s. Intuitively, this is what makes the S-estimators scale invariant.
DeMiguel and Nogales define the S-portfolio as the policy that minimizes
the S-estimate of risk, namely, the portfolio that solves the following opti-
mization problem:

min
w ,m ,s

s

s .t .

1

S

S
∑

i=1

ρ(
w ′rs −m

s
) = K

µ′w = r

w ≥ 0

Exercise: Tukey biweight loss

It is left to the reader to implement the Tukey biweight function as the loss
function of an S-estimator in AMPL. The procedure is similar to the imple-
mentation of the Huber loss function in AMPL. For more information, see
DeMiguel and Nogales,http://faculty.london.edu/avmiguel/DeMiguel-
Nogales-OR.pdf.

90 M AND S ESTIMATORS

CHAPTER 9

MAD-PORTFOLIOS

9.1 INTRODUCTION

In this chapter we introduce the mean absolute deviation (MAD) Portfolio.
It was proposed by Konno and Yamazaki in 1992. Unlike the Markowitz
model, the MAD-Portfolio model does not assume normality of stock
returns. Instead, it measures the risk of a portfolio by the average of the
absolute deviations:

S
∑

s=1

1

S
|

N
∑

i=1

(ri ,s −µi)wi | (9.1)

In the case of normally distributed returns, the reduction of the mean
absolute deviations is equivalent to minimizing the variance. For more fat-
tailed distributed returns, the MAD-Portfolio is more robust and stable.
Furthermore the MAD-Portfolio is easier to compute than Markowitz
because it can be linearized, and it eliminates the need for a covariance
matrix.
The topics presented in this chapter are:

• MADNONLIN - Nonlinear Minimum Risk Portfolio

• MAD1 - Minimum Risk Portfolio

• MADGLOB - Global Minimum Risk Portfolio

• MAD2 - Maximum Return Portfolio

• MADEDR - Equi-Distant Return Frontier

• MAD3 - Critical Line Algorithm

• MADRATIO - Reward/Risk Ratio Portfolio

91

92 MAD-PORTFOLIOS

• MADDIV - Herfindahl Risk Diversification

• MADHULL - Hull of the Mean-Variance Portfolio

• MADSET - Feasible Set of the Mean-Variance Portfolio

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.

9.2. NONLINEAR MAD-PORTFOLIO 93

9.2 NONLINEAR MAD-PORTFOLIO

The aim of the MAD-portfolio approach is to minimize the mean absolute
deviation of the returns. The function to calculate these deviations is
given in equation 9.1. When we add the usual portfolio constraints, the
minimum risk MAD-portfolio problem looks as following:

min
x

S
∑

s=1

1

S
|

N
∑

i=1

(ri ,s −µi)wi |

s .t .
N
∑

i=1

wi = 1

wi ≥ 0

Here N is the number of assets, S is the number of scenarios, r are the
financial returns, w are the portfolio weights, and µ is the vector of the
average asset returns.

Compose the R/AMPL model file:

> modelMADNONLIN <- c(

"param N ;",

"param S ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{s in 1..S} 1/S * abs (sum{i in 1..N} (Scenarios[s, i] - mu[i]) * w[i]) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;")

> amplModelFile(model=modelMADNONLIN, project="myPortfolio")

Since the model in nonlinear, we use the solver minos. THe R/AMPL run
file looks as following:

> runMADNONLIN <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMADNONLIN, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file:

> Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> requiredData(modelMADNONLIN)

[1] "N" "S" "mu" "Scenarios"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

94 MAD-PORTFOLIOS

> mu <- colMeans(Scenarios)

> dataMADNONLIN <- dataAUTO(modelMADNONLIN)

> amplDataFile(data=dataMADNONLIN, project="myPortfolio")

Optimize the Portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMADNONLIN <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMADNONLIN) <- colnames(Scenarios)

> weightsMADNONLIN

SBI SPI SII LMI MPI ALT

0.51102 0.00000 0.10054 0.33332 0.00000 0.05512

Summarize the results:

> SummaryMADNONLIN <- c(

TargetReturn = mu %*% weightsMADNONLIN,

Risk = 1/S* sum(abs(t(t(Scenarios)-mu)%*%weightsMADNONLIN)),

HerfindahlIndex = 1 - weightsMADNONLIN %*% weightsMADNONLIN)

> SummaryMADNONLIN

TargetReturn Risk HerfindahlIndex

0.014446 0.085887 0.614610

9.3. LINEAR MIN-RISK MAD-PORTFOLIO 95

0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
02

0.
04

0.
06

Minimum risk MAD−Portfolio

Absolute Deviation Risk

R
et

ur
ns

●

●
●

●

Min−Risk portfolio
Max−Return portfolio

FIGURE 9.1: Minimum Risk MAD-Portfolio on the Mean-MAD hull

9.3 LINEAR MIN-RISK MAD-PORTFOLIO

Non-linear objective functions are much harder to optimize than linear
ones. Fortunately, the MAD-Portfolio problem can be linearized very easily,
as shown by Konno and Yamazaki (1991) or Scherer and Martin (2005). To
linearize the problem, we have to remove the absolute value function in
the objective. This can be done by adding the additional variables x [s],
and the constraints

N
∑

i=1

(ri ,s −µi)wi − xs ≤ 0 (9.2)

and

N
∑

i=1

(ri ,s −µi)wi + xs ≥ 0 (9.3)

96 MAD-PORTFOLIOS

The problem can then be written as

min
x ,w

1

S

S
∑

s=1

xs (9.4)

s .t .
N
∑

i=1

(ri ,s −µi)wi − xs ≤ 0

N
∑

i=1

(ri ,s −µi)wi + xs ≥ 0

N
∑

i=1

wi = 1

xs ≥ 0

wi ≥ 0

It is straightforward to implement this problem into an R/AMPL model
file:

> modelMADGLOB <- c(

"param N ;",

"param S ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"minimize Objective: sum{s in 1..S} x[s] / S ;",

"subject to Budget: sum{n in 1..N} w[n] = 1 ;",

"subject to Minus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] + x[k] >= 0 ;")

> amplModelFile(model=modelMADGLOB, project="myPortfolio")

The R/AMPL run file looks as following:

> runMADGLOB <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMADGLOB, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file:

> requiredData(modelMADGLOB)

[1] "N" "S" "mu" "Scenarios"

> Scenarios <- 100*LPP2005.RET[117:217, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

9.3. LINEAR MIN-RISK MAD-PORTFOLIO 97

> mu <- colMeans(Scenarios)

> dataMADGLOB <- dataAUTO(modelMADGLOB)

> amplDataFile(data=dataMADGLOB, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMADGLOB <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMADGLOB) <- colnames(Scenarios)

> weightsMADGLOB

SBI SPI SII LMI MPI ALT

0.651032 0.000000 0.133612 0.185117 0.000000 0.030239

And of course, if we compare the weights to the non-linear optimization
problem we get the same numbers for the weights, at least to a precision
of 6 digits.

98 MAD-PORTFOLIOS

9.4 LINEAR EFFICIENT MAD-PORTFOLIO

To compute the efficient MAD-portfolio, i.e. the portfolio that minimizes
the mean absolute deviation for a desired predefined target return r , we
can just add the target return as a constraint to our model:

min
x ,w

1

S

S
∑

s=1

xs

s .t .
N
∑

i=1

(ri ,s −µi)wi − xs ≤ 0

N
∑

i=1

(ri ,s −µi)wi + xs ≥ 0

N
∑

i=1

wi = 1

xs ≥ 0

wi ≥ 0
N
∑

i=1

µi wi ≥ r

The R/AMPL model file looks as following::

> modelMAD1 <- c(

"param N ;",

"param S ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"minimize Objective: sum{s in 1..S} x[s] / S ;",

"subject to Budget: sum{n in 1..N} w[n] = 1 ;",

"subject to Minus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] + x[k] >= 0 ;",

"subject to Reward: sum{n in 1..N} mu[n] * w[n] >= targetReturn ;")

> amplModelFile(model=modelMAD1, project="myPortfolio")

R/AMPL run file:

> runMAD1 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMAD1, project="myPortfolio")

9.4. LINEAR EFFICIENT MAD-PORTFOLIO 99

We have to add the target return to the R/AMPL data file. As the value, we
take the expected return of the equal-weights-portfolio:

> requiredData(modelMAD1)

[1] "N" "S" "mu" "Scenarios" "targetReturn"

> Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> dataMAD1 <- dataAUTO(modelMAD1)

> amplDataFile(data=dataMAD1, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMAD1 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMAD1) <- colnames(Scenarios)

Summarize the results:

> SummaryMAD1 <- c(

TargetReturn = mu %*% weightsMAD1,

Risk = 1/S* sum(abs(t(t(Scenarios)-mu)%*%weightsMAD1)),

HerfindahlIndex = 1 - weightsMAD1 %*% weightsMAD1)

> SummaryMAD1

TargetReturn Risk HerfindahlIndex

0.026626 0.133678 0.451166

100 MAD-PORTFOLIOS

0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
02

0.
04

0.
06

Efficient Mean−MAD−Portfolio

Absolute Deviation Risk

R
et

ur
ns

●

●

●
●

●

●

Min−Risk portfolio
Efficient MAD−Portfolio
Max−Return portfolio

FIGURE 9.2: Efficient Frontier Portfolio on the Mean-MAD hull

9.5 MAX-RETURN MAD-PORTFOLIO

Similarly to the Maximum Return Markowitz Portfolio, we can exchange
the target return with a target risk as a constraint, and proceed to maximize
the expected return. The problem is then formulated as following:

9.5. MAX-RETURN MAD-PORTFOLIO 101

max
x ,w

N
∑

i=1

µi wi

s .t .
N
∑

i=1

(ri ,s −µi)wi − xs ≤ 0

N
∑

i=1

(ri ,s −µi)wi + xs ≥ 0

N
∑

i=1

wi = 1

1

S

S
∑

s=1

xs ≤ R

xs ≥ 0

wi ≥ 0

where R is the target risk.
The R/AMPL model file can then be written as following:

> modelMAD2 <- c(

"param N ;",

"param S ;",

"param targetRisk ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"maximize Objective: sum{n in 1..N} mu[n] * w[n] ;",

"subject to Budget: sum{n in 1..N} w[n] = 1 ;",

"subject to Risk: sum{s in 1..S} x[s] / S <= targetRisk;",

"subject to Minus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] + x[k] >= 0 ;")

> amplModelFile(model=modelMAD2, project="myPortfolio")

and the R/AMPL run file is unchanged

> runMAD2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMAD2, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. We again
take the calculated risk from the MAD1 approach as the target risk.

102 MAD-PORTFOLIOS

> requiredData(modelMAD2)

[1] "N" "S" "targetRisk" "mu" "Scenarios"

> Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> targetRisk <- 1/S* sum(abs(t(t(Scenarios)-mu)%*%weightsMAD1))

> dataMAD2 <- dataAUTO(modelMAD2)

> amplDataFile(data=dataMAD2, project="myPortfolio")

Optimize the portfolio and extract the weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMAD2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMAD2) <- colnames(Scenarios)

> weightsMAD2

SBI SPI SII LMI MPI ALT

0.032349 0.124594 0.000000 0.718923 0.000000 0.124134

As expected, the weights are exactly the same as for the risk-minimization
approach.

9.6. EQUI-DISTANT RETURN FRONTIER 103

9.6 EQUI-DISTANT RETURN FRONTIER

Again, we just add the additional parameters for computing the frontier
to the existing MAD1 model file:

> modelMADEDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"param N ;",

"param S ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"minimize Objective: sum{s in 1..S} x[s] / S ;",

"subject to Budget: sum{n in 1..N} w[n] = 1 ;",

"subject to Minus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] + x[k] >= 0 ;",

"subject to Reward: sum{n in 1..N} mu[n] * w[n] >= targetReturn ;")

> amplModelFile(model=modelMADEDR, project="myPortfolio")

or in short:

> modelMADEDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

modelMAD1)

> amplModelFile(model=modelMADEDR, project="myPortfolio")

As in the Markowitz approach, the R/AMPL Run File has to be modified
for this algorithm since now we are looping over several target returns.
In order to get a value for the minReturn-parameter, we solve the prob-
lem first for a target return set to −∞ in order to calculate the expected
return of the minimum risk portfolio. We then define the values for the
minReturn- and maxReturn-parameter. Afterwards, we introduce a loop
and replace the value of r for every iteration:

> runMVEDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let targetReturn := -999;",

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

104 MAD-PORTFOLIOS

> amplRunFile(run=runMVEDR, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. We do not
need to specify the targetReturn, the minReturn or the maxReturn as this
is done in the run file.

> requiredData(modelMADEDR)

[1] "minReturn" "maxReturn" "nReturn" "N" "S"

[6] "mu" "Scenarios" "targetReturn"

> Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- NA

> minReturn <- NA

> maxReturn <- NA

> nReturn <- 33

> dataMADEDR <- dataAUTO(modelMADEDR)

> amplDataFile(data=dataMADEDR, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMADEDR <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMADEDR) <- colnames(Scenarios)

> rownames(weightsMADEDR) <- paste0("MADEDR-", 0:nReturn)

>

Summarize the results:

> Returns <- Risks <- NULL

> for (i in 0:nReturn) {

Returns <- c(Returns, mu %*% weightsMADEDR[i+1,])

Risks <- c(Risks, 1/S* sum(abs(t(t(Scenarios)-mu)%*%weightsMADEDR[i+1,]))) }

> SummaryMADEDR <- cbind(

targetReturn=Returns,

Risk = Risks,

HerfindahlIndex = 1 - diag(weightsMADEDR %*% t(weightsMADEDR)))

9.7. CRITICAL LINE ALGORITHM MAD-PORTFOLIO 105

0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
02

0.
04

0.
06

Efficient Mean−MAD−Portfolio

Absolute Deviation Risk

R
et

ur
ns

●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●

●

●
●

●

●

Min−Risk portfolio
Efficient Frontier portfolios
Max−Return portfolio

FIGURE 9.3: Efficient Mean-MAD-Portfolios on the Mean-MAD hull

9.7 CRITICAL LINE ALGORITHM MAD-PORTFOLIO

This algorithm will be presented in section ...

106 MAD-PORTFOLIOS

9.8 REWARD/RISK RATIO PORTFOLIO

Similarly to the Sharpe Ratio, we can define a Reward/Risk ratio for the
MAD-Portfolio and try to maximize it. We can use the same framework
we applied to find the Sharpe ratio with a linear optimization problem:

min
x ,w ,t

S
∑

s=1

xs (9.5)

s .t .
N
∑

i=1

(ri ,s −µi)wi − xs ≤ 0

N
∑

i=1

(ri ,s −µi)wi + xs ≥ 0

1′w = t

µ′w = 1

xs ≥ 0

t ≥ 0

wi ≥ 0

The R/AMPL model file then looks as following:

> modelMADRATIO <- c(

"param N ;",

"param S ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"var t >= 0 ;",

"minimize Objective: sum{s in 1..S} x[s] / S ;",

"subject to Budget: sum{n in 1..N} w[n] = t ;",

"subject to Reward: sum{n in 1..N} mu[n]*w[n] = 1 ;",

"subject to Minus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] + x[k] >= 0 ;")

> amplModelFile(model=modelMADRATIO, project="myPortfolio")

Again we are now dealing with a non-linear function and therefore have
to replace the cplex solver with minos:

> runMADRATIO <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m]/t > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMADRATIO, project="myPortfolio")

9.8. REWARD/RISK RATIO PORTFOLIO 107

From the portfolio settings we construct the R/AMPL data file

> requiredData(modelMADRATIO)

[1] "N" "S" "mu" "Scenarios"

> Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> dataMADRATIO <- dataAUTO(modelMADRATIO)

> amplDataFile(data=dataMADRATIO, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMADRATIO <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMADRATIO) <- colnames(Scenarios)

The Ratio takes the value

Summarize the results:

> SummaryRATIO <- c(

TargetReturn = mu %*% weightsMADRATIO,

MADRisk = 1/S* sum(abs(t(t(Scenarios)-mu)%*%weightsMADRATIO)),

HerfindahlIndex = 1 - weightsMADRATIO %*% weightsMADRATIO)

> SummaryRATIO

TargetReturn MADRisk HerfindahlIndex

0.020883 0.098404 0.553634

Note that the reward/risk ratio portfolio lies on the efficient frontier:

Plot the Risk/Reward Diagram:

108 MAD-PORTFOLIOS

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
02

0.
04

0.
06

Reward/Risk MAD−Portfolio

Absolute Deviation Risk

R
et

ur
ns

●●
●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

Min−Risk Portfolio
Efficient Frontier Portfolios
Max−Return Portfolio
Reward/Risk−Ratio Portfolio

FIGURE 9.4: Position of the Reward/Risk-Ratio MAD-Portfolio

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

0.1 0.2 0.3 0.4 0.5 0.6

0.
12

0.
14

0.
16

0.
18

0.
20

Reward/Risk Ratio along Efficient Frontier

Risks

R
at

io
s

●

●

●

●

●

●

●

Min−Var portfolio
Efficient Frontier portfolios
Max−Return portfolio
Reward/Risk−Ratio portfolio

FIGURE 9.5: Max Reward/Risk Ratio or Tangency MAD-Portfolio

9.9. HULL OF THE MAD-PORTFOLIO 109

9.9 HULL OF THE MAD-PORTFOLIO

We use exactly the same steps, but replace the Markowitz-EDR model file
with the MAD-EDR model file, and additionally replace the risk expression
in the calculation of the Maximum Risk locus:

> modelMADMINHULL <- c(

MADMINHULL - Single Min-Risk MAD-Portfolio:",

"param N ;",

"param S ;",

"param mu{1..N} ;",

"param Scenarios{1..S, 1..N} ;",

"param Return ;",

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var x{1..S} >= 0 ;",

"minimize Objective: sum{s in 1..S} x[s] / S ;",

"subject to Budget: sum{n in 1..N} w[n] = 1 ;",

"subject to Reward: sum{n in 1..N} mu[n] * w[n] = Return ;",

"subject to Minus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] - x[k] <= 0 ;",

"subject to Plus {k in 1..S}: sum{n in 1..N} (Scenarios[k,n] - mu[n]) * w[n] + x[k] >= 0 ;")

> amplModelFile(model=modelMADMINHULL, project="myPortfolio")

R/AMPL run file

> runMADMINHULL <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"for {i in 0..nReturn} {",

" let Return := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMADMINHULL, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file

> Scenarios <- 100*LPP2005.RET[117:272, 1:6]

> requiredData(modelMADMINHULL)

[1] "N" "S" "mu" "Scenarios" "Return" "minReturn"

[7] "maxReturn" "nReturn"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> Return <- mean(mu)

> minReturn <- min(mu)

> maxReturn <- max(mu)

> nReturn <- 33

> dataMADMINHULL <- dataAUTO(modelMADMINHULL)

> amplDataFile(data=dataMADMINHULL, project="myPortfolio")

110 MAD-PORTFOLIOS

Optimize the portfolio and extract the weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMADMINHULL <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMADMINHULL) <- colnames(Scenarios)

> rownames(weightsMADMINHULL) <- paste0("MADMINHULL-", 0:nReturn)

Next we compute the maximum variance locus of the MAD-portfolio by
the maximum risk intersection of all pairwise portfolios

> MADHull <- function(mu, Return, Risk) {

Minimum Risks:

minRisks <- Risk

Returns <- risks <- Return

Maximum Risks:

maxRisks <- rep(-Inf, length(Returns))

nAssets <- length(mu)

for (i in 1:(nAssets - 1)) {

for (j in (i + 1):nAssets) {

mu2 <- mu[c(i, j)]

Scenarios2 <- Scenarios[,c(i,j)]

S <- nrow(Scenarios)

Index <- which(Returns >= min(mu2) & Returns <= max(mu2))

if (length(Index) > 0) {

Index <- (1:length(Returns))[Index]

for (k in Index) {

weights <- (Returns[k] - mu2[2])/(mu2[1] - mu2[2])

weights <- c(weights, 1 - weights)

Risk <- 1/S* sum(abs(t(t(Scenarios2)-mu2)%*%weights))

maxRisks[k] <- max(maxRisks[k], Risk) }

}

}

}

Hull:

risk <- c(minRisks, rev(maxRisks[-1])[-1], minRisks[1])

return <- c(Returns, rev(Returns[-1])[-1], Returns[1])

hull <- cbind(Risks = risk, Returns = return)

Return Value:

hull

}

The input for the MADHull() are the column means (mu) of the assets,
the covariance matrix Sigma, and the Return and Risk values along the
minimum variance locus and the efficient frontier.
Compute measures:

> Return <- Risk <- NULL

> for (i in 0:nReturn) {

Return <- c(Return, mu %*% weightsMADMINHULL[i+1,])

Risk <- c(Risk, 1/S* sum(abs(t(t(Scenarios)-mu)%*%weightsMADMINHULL[i+1,]))) }

> hull <- MADHull(mu, Return, Risk)

PART IV

MEAN-CVAR DESIGNS

111

9.9. HULL OF THE MAD-PORTFOLIO 113

CHAPTER 10

MEAN-CVAR PORTFOLIOS

10.1 INTRODUCTION

In this chapter we introduce the Mean-CVaR Portfolio and show how to
solve the following types of portfolios

• CVAR1 Minimum Risk Mean-CVaR Efficient Portfolio

• CVARGLOB Global Minimum Risk Efficient Portfolio

• CVAR2 Maximum Return Mean-CVaR Efficient Portfolio

• CVAREDR Equi-distant Return Mean-CVaR Frontier

• CVAR3 Mean-CVaR Critical Line Algorithm

• CVARSORTINO Reward/CVaR Ratio Portfolio

• CVARDIV Herfindahl Risk Diversification

• CVARHULL Mean-CVaR Hull

• CVARSET Mean-CVaR Feasible Set

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.
The targetReturn for the equal weights portfolio is defined by the grand
mean of the portfolio scenarios, and the targetRisk is defined by the
grand variance of the portfolio. mu is the vector of the sample means of
the assets, and Sigma the sample covariance matrix. Our default value for
the VaR quantile, or conficence level, alpha is 5%.

115

116 MEAN-CVAR PORTFOLIOS

Please note that although the theoretical definition of the CVaR is well
defined, there exist different techniques to estimate the CVaR, which do
not necessarily yield the exact same value. During this chapter, we will
use the following function to estimate the CVaR from existing portfolio
weights:

> pfolioCVaR <- function (x, weights = NULL, alpha = 0.05)

{

data <- as.matrix(x)

if (is.null(weights))

weights = rep(1/dim(data)[[2]], dim(data)[[2]])

n <- dim(data)[1]

Rp <- apply(t(t(data) * weights), 1, sum)

sorted <- sort(Rp)

n.alpha <- floor(n * alpha)

VaR <- sorted[n.alpha]

n.alpha <- max(1, floor(n * alpha) - 1)

CVaRplus <- mean(sorted[1:n.alpha])

lambda <- 1 - floor(n * alpha)/(n * alpha)

ans <- as.vector(lambda * VaR + (1 - lambda) * CVaRplus)

names(ans) <- "CVaR"

attr(ans, "control") = c(CVaRplus = CVaRplus, lambda = lambda)

ans

}

10.2. GLOBAL MINIMUM RISK CVAR PORTFOLIO 117

10.2 GLOBAL MINIMUM RISK CVAR PORTFOLIO

For standard global mimimun-risk portfolios we optimize the weights by
maximizing the Conditional Value-at-Risk for a long-only CVaR portfolio.
Here, maximizing the conditional value-at-risk means minimizing the
total risk. The linearized CVaR model can be written as:

min
w ,V a R ,x

1

αS

S
∑

s=1

xs −V a R (10.1)

s .t .

1′w = 1

wi ≥ 0
N
∑

i=1

rs ,i wi −V a R + xs ≥ 0

xs ≥ 0

The R/AMPL model file can be written as following:

> modelCVARGLOB <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param alpha ;",

"var w{1..N} >= 0, default 1/N ;",

"var VaR ;",

"var x{1..S} >= 0 ;",

"minimize Objective: (sum{s in 1..S} x[s]) / (alpha*S)-VaR ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to CVaR{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] - VaR + x[s] >= 0 ;")

> amplModelFile(model=modelCVARGLOB, project="myPortfolio")

The R/AMPL run file looks as usual:

> runCVARGLOB <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"printf \"%16.6f\", Objective > myPortfolio.par ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runCVARGLOB, project="myPortfolio")

We have to specify the asset returns, the number of assets, the number of
returns, and the quantile for the data file:

> requiredData(modelCVARGLOB)

[1] "N" "S" "Scenarios" "alpha"

118 MEAN-CVAR PORTFOLIOS

> Scenarios <- 100*LPP2005REC[1:250,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> alpha <- 0.05

> dataCVARGLOB <- dataAUTO(modelCVARGLOB)

> amplDataFile(data=dataCVARGLOB, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCVARGLOB <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCVARGLOB) <- colnames(Scenarios)

> weightsCVARGLOB

SBI SPI SII LMI MPI ALT

0.132539 0.000000 0.132857 0.666020 0.000000 0.068584

Summarize the results:

> SummaryCVARGLOB <- c(

Return = mu %*% weightsCVARGLOB,

CVaR = -pfolioCVaR(Scenarios,weightsCVARGLOB,alpha=alpha),

CovarianceRisk = sqrt (weightsCVARGLOB %*% Sigma %*% weightsCVARGLOB),

HerfindahlIndex = 1 - weightsCVARGLOB %*% weightsCVARGLOB)

> SummaryCVARGLOB

Return CVaR.CVaR CovarianceRisk HerfindahlIndex

0.0090221 0.2172455 0.1078056 0.5164960

10.3. EFFICIENT MIN-RISK PORTFOLIOS 119

0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

Minimum CVaR Portfolio

CVaR Risk

R
et

ur
ns

●

● Min−CVaR portfolio

FIGURE 10.1: Feasible set and the position of the minimum CVaR portfolio.

10.3 EFFICIENT MIN-RISK PORTFOLIOS

For standard efficient mimimun-risk portfolios we optimize the weights
by maximizing the Conditional Value-at-Risk for a long-only mean-CVaR
portfolio. Here, maximizing the condititional value-at-risk means mini-
mizing the total risk. The linearized model can be written as:

120 MEAN-CVAR PORTFOLIOS

min
w ,V a R ,x

1

αS

S
∑

s=1

xs −V a R (10.2)

s .t .

1′w = 1

µ′w ≥ r

wi ≥ 0
N
∑

i=1

rs ,i wi −V a R + xs ≥ 0

xs ≥ 0

The mean-CVaR portfolio R/AMPL model file looks as following:

> modelCVAR1 <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var VaR ;",

"var x{1..S} >= 0 ;",

"minimize Objective: (sum{s in 1..S} x[s]) / (alpha*S)-VaR ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to CVaR{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] - VaR + x[s] >= 0 ;")

> amplModelFile(model=modelCVAR1, project="myPortfolio")

The R/AMPL run file looks as usual:

> runCVAR1 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runCVAR1, "myPortfolio")

From the portfolio settings we construct the R/AMPL data file. We now
also have to specify the value of the target return which we set to be the
grand mean of all assets:

> requiredData(modelCVAR1)

[1] "N" "S" "Scenarios" "mu" "alpha"

[6] "targetReturn"

> Scenarios <- 100*LPP2005REC[1:250,1:6]

> N <- ncol(Scenarios)

10.3. EFFICIENT MIN-RISK PORTFOLIOS 121

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> targetReturn <- mean(mu)

> dataCVAR1 <- dataAUTO(modelCVAR1)

> amplDataFile(data=dataCVAR1, project="myPortfolio")

Optimize the CVAR1 model and extract the optimal weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCVAR1 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCVAR1) <- colnames(Scenarios)

> weightsCVAR1

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.00000 0.54153 0.00000 0.45847

Summarize the results:

> SummaryCVaR1 <- c(

Return = mu %*% weightsCVAR1,

CVaR = -pfolioCVaR(Scenarios, weightsCVAR1,0.05),

CovarianceRisk = sqrt (weightsCVAR1 %*% Sigma %*% weightsCVAR1),

HerfindahlIndex = 1 - weightsCVAR1 %*% weightsCVAR1)

> SummaryCVaR1

Return CVaR.CVaR CovarianceRisk HerfindahlIndex

0.041504 0.533257 0.245179 0.496551

122 MEAN-CVAR PORTFOLIOS

0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

Mean−CVaR Portfolio

CVaR Risk

R
et

ur
ns

●

●

●
●

●

●

Min−CVaR portfolio
Mean−CVaR portfolio
Max−Return portfolio

FIGURE 10.2: Feasible set and the position of an efficient Mean-CVaR portfolio.

10.4 EFFICIENT MAX-RETURN PORTFOLIOS

Krokhmal, Palmquist and Uryasev showed that the linearized mean-CVAR
portfolio can also be calculated with the CVAR as the target constraint
while minimizing the expected return, very similar to the MAD portfolio.
The problem can then be written as following:

10.4. EFFICIENT MAX-RETURN PORTFOLIOS 123

max
w ,V a R ,x

µ′w (10.3)

s .t .

1′w = 1

wi ≥ 0

1

αS

S
∑

s=1

xs −V a R ≤ R

N
∑

i=1

rs ,i wi −V a R + xs ≥ 0

xs ≥ 0

where R is the target risk.
In the R/AMPL model file, the risk and return are now interchanged:

> modelCVAR2 <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"param targetRisk ;",

"var w{1..N} >= 0, default 1/N ;",

"var VaR ;",

"var x{1..S} >= 0 ;",

"maximize Objective: sum{i in 1..N} mu[i] * w[i] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to cvarRisk: (sum{s in 1..S} x[s]) / (alpha*S)-VaR <= targetRisk;",

"subject to CVaR{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] - VaR + x[s] >= 0 ;")

> amplModelFile(model=modelCVAR2, project="myPortfolio")

The R/AMPL run file is the same as in the previous example

> runCVAR2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runCVAR2, "myPortfolio")

The R/AMPL data file is also unchanged except the need of the target risk.
We will use the CVaR value of the CVaR1 result we already calculated:

> requiredData(modelCVAR2)

[1] "N" "S" "Scenarios" "mu" "alpha"

[6] "targetRisk"

124 MEAN-CVAR PORTFOLIOS

> Scenarios <- 100*LPP2005REC[1:250,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> targetRisk <- SummaryCVaR1[2] # Grand mean CVaR Risk

> dataCVAR2 <- dataAUTO(modelCVAR2)

> amplDataFile(data=dataCVAR2, project="myPortfolio")

Optimize the CVaR2 model for the grand mean and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCVAR2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCVAR2) <- colnames(Scenarios)

> weightsCVAR2

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.00000 0.53301 0.00000 0.46699

We only get approximately the same weights as for the CVaR1 approach:

> weightsCVAR1

SBI SPI SII LMI MPI ALT

0.00000 0.00000 0.00000 0.54153 0.00000 0.45847

This is because of the differences in estimating the CVaR of a portfolio.
To feed the CVaR constraint into the AMPL data file, we use our above
defined pfolioCVaR function. In the AMPL model file, the CVaR constraint
might correspond to a slightly different portfolio since equation 10.3 esti-
mates the CVaR-value slightly lower than our function. If we would use
the same CVaR-estimator as in the model, we would receive exactly the
same weights.

10.5. EQUI-DISTANT RETURN FRONTIER 125

10.5 EQUI-DISTANT RETURN FRONTIER

To optimize the mean-CVaR portfolio along the efficient frontier we span
the efficient frontier and the minimum variance locus in equi-distant
parts.
For the R/AMPL model file we can use that one from the CVAR1 model and
add the parameters for the minimum and maximum returns, respectively.
minReturn and maxReturn take on the values from the worst and best
performing single assets. It looks as following;

> modelCVAREDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var VaR ;",

"var x{1..S} >= 0 ;",

"minimize Objective: (sum{s in 1..S} x[s]) / (alpha*S)-VaR ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to CVaR{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] - VaR + x[s] >= 0 ;")

> amplModelFile(model=modelCVAREDR, project="myPortfolio")

or in short:

> modelCVAREDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

modelCVAR1)

> amplModelFile(model=modelCVAREDR, project="myPortfolio")

As in the Markowitz approach, the R/AMPL Run File has to be modified
for this algorithm since now we are looping over several target returns.
In order to get a value for the minReturn-parameter, we solve the prob-
lem first for a target return set to −∞ in order to calculate the expected
return of the minimum risk portfolio. We then define the values for the
minReturn- and maxReturn-parameter. Afterwards, we introduce a loop
and replace the value of r for every iteration:

> runCVAREDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let targetReturn := -999;",

126 MEAN-CVAR PORTFOLIOS

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runCVAREDR, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. We do not
need to specify the targetReturn, the minReturn or the maxReturn as this
is done in the run file.

> requiredData(modelCVAREDR)

[1] "minReturn" "maxReturn" "nReturn" "N" "S"

[6] "Scenarios" "mu" "alpha" "targetReturn"

> Scenarios <- 100*LPP2005REC[1:250,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> targetReturn <- NA

> minReturn <- NA

> maxReturn <- NA

> nReturn <- 33

> dataCVAREDR <- dataAUTO(modelCVAREDR)

> amplDataFile(data=dataCVAREDR, project="myPortfolio")

Optimize the portfolio and extract weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCVAREDR <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsCVAREDR) <- colnames(Scenarios)

> rownames(weightsCVAREDR) <- 1:(nReturn+1)

To summarize, we create a data frame that holds the results for the return,
the CVaR and covariance risk, and the Herfindahl index for the portfolio’s
diversification.

10.6. CRITICAL LINE ALGORITHM 127

0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

Minimum CVaR Portfolio

CVaR Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

Min−CVaR portfolio
Efficient Frontier portfolios
Max−Return portfolio

FIGURE 10.3: Feasible set and the position of the minimum CVaR portfolio.

10.6 CRITICAL LINE ALGORITHM

See chapter ...

128 MEAN-CVAR PORTFOLIOS

10.7 STARR RATIO PORTFOLIO

The risk/reward ratio for the expected shortfall is called the STARR ratio.
It is defined as

µ′w

CVARα(w)
(10.4)

The STARR ratio portfolio is the portfolio that maximizes the STARR ra-
tio. Similar to the Sharpe ratio, it can be found by the following linear
optimization problem:

min
w ,VaR,x ,t

1

αS

S
∑

s=1

xs −VaR (10.5)

s .t .

1′w = t

µ′w = 1

wi ≥ 0

t ≥ 0
N
∑

i=1

rs ,i wi −V a R + xs ≥ 0

xs ≥ 0 (10.6)

R/AMPL model file

> modelCVARSTARR <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"var w{1..N} >= 0, default 1/N ;",

"var VaR ;",

"var x{1..S} >= 0 ;",

"var t >= 0 ;",

"minimize Objective: (sum{s in 1..S} x[s])/ (alpha*S) - VaR ;",

"subject to Reward : sum{k in 1..N} mu[k] * w[k] = 1 ;",

"subject to Budget: sum{i in 1..N} w[i] = t ;",

"subject to CVaR{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] - VaR + x[s] >= 0 ;")

> amplModelFile(model=modelCVARSTARR, project="myPortfolio")

R/AMPL run file:

> runCVARSTARR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

10.7. STARR RATIO PORTFOLIO 129

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m]/t > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runCVARSTARR, "myPortfolio")

R/AMPL data file:

> requiredData(modelCVARSTARR)

[1] "N" "S" "Scenarios" "mu" "alpha"

> Scenarios <- 100*LPP2005REC[1:250,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> dataCVARSTARR <- dataAUTO(modelCVARSTARR)

> amplDataFile(data=dataCVARSTARR, project="myPortfolio")

Optimize and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCVARSTARR <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCVARSTARR) <- colnames(Scenarios)

Summarize

> Sigma <- cov(Scenarios)

> SummaryCVARSTARR <- c(

Return = mu %*% weightsCVARSTARR,

CVaR = -as.numeric(pfolioCVaR(weights=weightsCVARSTARR,x=Scenarios,alpha=0.05)[1]),

CovarianceRisk = sqrt (weightsCVARSTARR %*% Sigma %*% weightsCVARSTARR),

HerfindahlIndex = 1 - weightsCVARSTARR %*% weightsCVARSTARR,

STARR_Ratio = mu %*% weightsCVARSTARR /(-as.numeric(pfolioCVaR(weights=weightsCVARSTARR,x=Scenarios,alpha=0.05)[1])))

> SummaryCVARSTARR

Return CVaR CovarianceRisk HerfindahlIndex STARR_Ratio

0.027878 0.337112 0.166287 0.412585 0.082696

Plot the Risk/Reward Diagram:

130 MEAN-CVAR PORTFOLIOS

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

STARR−Ratio Portfolio

CVaR Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●
●

●

●

●

Min−Risk Portfolio
Efficient Frontier Portfolios
Max−Return Portfolio
STARR−Ratio Portfolio

FIGURE 10.4: Position of the STARR-Ratio Portfolio

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
● ● ●

●
● ● ● ● ● ● ● ● ● ●

●

●

●

0.5 1.0 1.5 2.0

0.
04

0.
05

0.
06

0.
07

0.
08

STARR−Ratio along Efficient Frontier

CVaR Risk

R
at

io
s

●

●

●

●

●

●

●

Min−CVar portfolio
Efficient Frontier portfolios
Max−Return portfolio
STARR−Ratio portfolio

FIGURE 10.5: STARR-Ratio or Tangency CVaR-Portfolio

10.8. MEAN-CVAR HULL 131

10.8 MEAN-CVAR HULL

In this section we show how to write an R function, that computes the hull
of the unconstrained mean-CVaR portfolio. The hull has a left hand side,
LHS, and a right hand side, RHS. The LHS is composed of the efficient
frontier and the minimum CVaR locus, and the RHS is composed of the
maximum CVaR locus. The LHS is easy to calculate with the help of a
linear programming solver. The RHS is much more complex, i.e. the func-
tion to be optimized is non-convex. Thus we solve the rhs by optimizing
all pairwise portfolios, just like for the Markowitz Portfolio or the MAD
portfolio. The union of the pairwise solutions yields the rhs of the hull.
In the first step we derive the efficient mean-CVaR frontier. Let us start
with the R/AMPL model file. For this we can use the model file from the
CVAREDR (equi-distant return) portfolio.

> modelCVARMINHULL <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"param targetReturn ;",

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var VaR ;",

"var x{1..S} >= 0 ;",

"maximize Objective: VaR - (sum{s in 1..S} x[s]) / (alpha*S) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] = targetReturn ;",

"subject to CVaR{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] - VaR + x[s] >= 0 ;")

> amplModelFile(model=modelCVARMINHULL, project="myPortfolio")

To complete the specification we add the R/AMPL run file

> runCVARMINHULL <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runCVARMINHULL, project="myPortfolio")

and the R/AMPL data file

> requiredData(modelCVARMINHULL)

[1] "N" "S" "Scenarios" "mu" "alpha"

[6] "targetReturn" "minReturn" "maxReturn" "nReturn"

132 MEAN-CVAR PORTFOLIOS

> Scenarios <- 100*LPP2005REC[1:250,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> targetReturn <- 999

> minReturn <- min(mu)

> maxReturn <- max(mu)

> nReturn <- 33

> dataCVARMINHULL <- dataAUTO(modelCVARMINHULL)

> amplDataFile(data=dataCVARMINHULL, project="myPortfolio")

Now we are ready to optimize the portfolio and to extract the optimal
weights and CVaR value.

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCVARMINHULL <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsCVARMINHULL) <- colnames(Scenarios)

> rownames(weightsCVARMINHULL) <- paste0("CVARHULL-", 0:nReturn)

> for (i in 1:(nReturn+1)){

Risk <- c(Risk,

-as.numeric(pfolioCVaR(Scenarios,weightsCVARMINHULL[i,],alpha=alpha)[1]))}

> Return <- (mu %*% t(weightsCVARMINHULL))[1,]

The input for the CVaRHull() are the column means (mu) of the assets,
the Scenarios, the percentile α, and the Return and Risk values along
the minimum variance locus and the efficient frontier.

> CVaRHull <- function(mu, Scenarios,alpha, Return, Risk) {

Minimum Risks:

minRisks <- Risk

Returns <- risks <- Return

Maximum Risks:

maxRisks <- rep(-Inf, length(Returns))

nAssets <- ncol(Scenarios)

for (i in 1:(nAssets - 1)) {

for (j in (i + 1):nAssets) {

mu2 <- mu[c(i, j)]

Scenarios2 <- Scenarios[, c(i, j)]

Index <- which(Returns >= min(mu2) & Returns <= max(mu2))

if (length(Index) > 0) {

Index <- (1:length(Returns))[Index]

for (k in Index) {

weights <- (Returns[k] - mu2[2])/(mu2[1] - mu2[2])

weights <- c(weights, 1 - weights)

Risk <- -pfolioCVaR(Scenarios2,weights,alpha)[1]

maxRisks[k] <- max(maxRisks[k], Risk) }

}

}

}

Hull:

risk <- c(minRisks, rev(maxRisks[-1])[-1], minRisks[1])

return <- c(Returns, rev(Returns[-1])[-1], Returns[1])

hull <- cbind(Risks = risk, Returns = return)

Return Value:

10.8. MEAN-CVAR HULL 133

hull

}

Now we only have to execute the function with the minimum CvaR locus
as input in order to retrieve the whole hull:

> hull <- CVaRHull(mu, Scenarios, alpha, Return, Risk)

134 MEAN-CVAR PORTFOLIOS

CHAPTER 11

MINIMAX PORTFOLIOS

11.1 INTRODUCTION

In this chapter we introduce the the MiniMax Portfolio, also called the
minimum regret portfolio. The topics are:

• MinRegret Portfolio

• Efficient minRegret Portfolio

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package.

11.2 MINIMAX PORTFOLIO

The Minimax Portfolio maximizes the minimum portfolio return for a set
of return scenarios (historical data in our case). This minimum return is
also regret. Given the portfolio weights w and the matrix of asset returns
R , the regret can be easily calculated using

Regret=min
�

R ·w ′) (11.1)

Note that the Minimax Portfolio is a special case of the CVaR portfolio,
namely the portfolio with α= 1/S .

The regret of a portfolio can be maximizes by solving the following linear
program.

135

136 MINIMAX PORTFOLIOS

max
w ,Rmin

Rmin (11.2)

s .t .

∀s ∈ {1..S} :
N
∑

i=1

rs ,i wi ≥ Rmin

1′w = 1

wi ≥ 0

Here N is the number of assets, S is the number of scenarios, rs ,i are the
daily financial returns of asset i , w are the portfolio weights. Note that the
first constraint means that Rmin is at least as small as the minimal portfolio
return min(r w).

It is now straightforward to define the R/AMPL model file:

> modelMINIMAXGLOB <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"var Rmin ;",

"maximize Objective: Rmin ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Min{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] >= Rmin ;")

> amplModelFile(model=modelMINIMAXGLOB, project="myPortfolio")

Since the model is linear, we can as usual use our standard run file:

> runMINIMAXGLOB <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"printf \"%16.6f\", Objective > myPortfolio.par ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMINIMAXGLOB, project="myPortfolio")

The data file needs the following input:

> requiredData(modelMINIMAXGLOB)

[1] "N" "S" "Scenarios"

> Scenarios <- 100*LPP2005REC[, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> dataMINIMAXGLOB <- dataAUTO(modelMINIMAXGLOB)

> amplDataFile(data=dataMINIMAXGLOB, project="myPortfolio")

Optimize the model and extract the optimal weights:

11.3. EFFICIENT MINIMAX PORTFOLIO 137

Distribution of LPP2005−returns

Returns

D
en

si
ty

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

Regret of Minimax Portfolio

FIGURE 11.1: The distribution of the assets in the LPP2005 index, and the maximal regret of
the computed Minimax Portfolio.

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMINIMAXGLOB <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMINIMAXGLOB) <- colnames(Scenarios)

Summarize the results:

> SummaryMINIMAXGLOB <- c(

Return = mu %*% weightsMINIMAXGLOB,

Regret = min(Scenarios%*%weightsMINIMAXGLOB),

CovarianceRisk = sqrt (weightsMINIMAXGLOB %*% Sigma %*% weightsMINIMAXGLOB),

HerfindahlIndex = 1 - weightsMINIMAXGLOB %*% weightsMINIMAXGLOB)

> SummaryMINIMAXGLOB

Return Regret CovarianceRisk HerfindahlIndex

0.0094479 -0.2635741 0.1093068 0.2230009

In figure 11.1, the position of the regret of the computed Minimax Portfolio
compared to the return distribution of the individual assets is depicted. It
is visible that the maximal regret of the portfolio is significantly reduced.

11.3 EFFICIENT MINIMAX PORTFOLIO

For the efficient Minimax Portfolio, we just have to add the constraint on
the expected return.

138 MINIMAX PORTFOLIOS

max
w ,Rmi n

Rmi n (11.3)

s .t .
N
∑

i=1

rs ,i wi ≥ Rmi n

µ′w ≥ r

1′w = 1

wi ≥ 0

Here r is the target return, N is the number of assets, S is the number of
scenarios, rs ,i are the daily financial returns of asset i , w are the portfolio
weights.

It is now straightforward to define the R/AMPL model file:

> modelMINIMAX1 <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var Rmin ;",

"maximize Objective: Rmin ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to Min{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] >= Rmin ;")

> amplModelFile(model=modelMINIMAX1, project="myPortfolio")

The model remains linear, thus we do not have the change the solver.

> runMINIMAX1 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"printf \"%16.6f\", Objective > myPortfolio.par ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMINIMAX1, project="myPortfolio")

The data file needs the following input:

> requiredData(modelMINIMAX1)

[1] "N" "S" "Scenarios" "mu" "targetReturn"

> Scenarios <- 100*LPP2005REC[, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> targetReturn <- mean(Scenarios)

11.3. EFFICIENT MINIMAX PORTFOLIO 139

Distribution of LPP2005−returns

Returns

D
en

si
ty

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

Regret of Minimax Portfolio

Regret of efficient Minimax Portfolio

FIGURE 11.2: The distribution of the assets in the LPP2005 index, and the maximal regret of
the computed Minimax Portfolio and efficient Minimax Portfolio.

> mu <- colMeans(Scenarios)

> dataMINIMAX1 <- dataAUTO(modelMINIMAX1)

> amplDataFile(data=dataMINIMAX1, project="myPortfolio")

As usual we have taken the expected return of the equal-weights-portfolio
as the desired target return. Optimize the model and extract the optimal
weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMINIMAX1 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMINIMAX1) <- colnames(Scenarios)

Summarize the results:

> SummaryMINIMAX1 <- c(

Return = mu %*% weightsMINIMAX1,

Regret = min(Scenarios%*%weightsMINIMAX1),

CovarianceRisk = sqrt (weightsMINIMAX1 %*% Sigma %*% weightsMINIMAX1),

HerfindahlIndex = 1 - weightsMINIMAX1 %*% weightsMINIMAX1)

> SummaryMINIMAX1

Return Regret CovarianceRisk HerfindahlIndex

0.043077 -0.935348 0.279717 0.427825

In figure 11.2, it is visible that the maximal regret of the Minimax Portfolio
decreases significantly when we introduce a constraint on the expected
return.

140 MINIMAX PORTFOLIOS

11.4 EQUI-DISTANT RETURN FRONTIER

As usual, we add the three additional parameters to the model file to
calculate the efficient frontier:

> modelMINIMAXEDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var Rmin ;",

"maximize Objective: Rmin ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to Min{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] >= Rmin ;")

> amplModelFile(model=modelMINIMAXEDR, project="myPortfolio")

We use the same run-file as for the CVaR return frontier:

> runMINIMAXEDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let targetReturn := -999;",

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMINIMAXEDR, project="myPortfolio")

In order to get a value for the minReturn-parameter, we solve the prob-
lem first for a target return set to −∞ in order to calculate the expected
return of the minimum risk portfolio. We then define the values for the
minReturn- and maxReturn-parameter. Afterwards, we introduce a loop
and replace the value of r for every iteration.
The data file needs the following input:

> requiredData(modelMINIMAXEDR)

[1] "minReturn" "maxReturn" "nReturn" "N" "S"

[6] "Scenarios" "mu" "targetReturn"

> Scenarios <- 100*LPP2005REC[, 1:6]

> N <- ncol(Scenarios)

11.5. HULL 141

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- NA

> minReturn <- NA

> maxReturn <- NA

> nReturn <- 33

> dataMINIMAXEDR <- dataAUTO(modelMINIMAXEDR)

> amplDataFile(data=dataMINIMAXEDR, project="myPortfolio")

Optimize the model and extract the optimal weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMINIMAXEDR <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMINIMAXEDR) <- colnames(Scenarios)

> rownames(weightsMINIMAXEDR) <- 1:(nReturn+1)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
00

0.
02

0.
04

0.
06

0.
08

Minimum Regret Frontier

Portfolio regret

R
et

ur
ns

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

Min−Regret portfolio
Efficient Frontier portfolios
Max−Return portfolio

FIGURE 11.3: Regret hull, minimum regret portfolio and efficient frontier portfolios

11.5 HULL

As always, we calculate the hull in two steps:

142 MINIMAX PORTFOLIOS

• First, we calculate the minimum regret locus with AMPL.

• Then we calculate the maximum regret frontier by comparing the
pairwise blinds between each asset.

Step 1: Minimum regret locus

For the first step, we use the modified EDR-model file with the target return
now being am equality constraint:

> modelMINIMAXMINHULL <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var Rmin ;",

"maximize Objective: Rmin ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] = targetReturn ;",

"subject to Min{s in 1..S}: sum{i in 1..N} Scenarios[s,i] * w[i] >= Rmin ;")

> amplModelFile(model=modelMINIMAXMINHULL, project="myPortfolio")

To complete the specification, we add the R/AMPL run file;

> runMINIMAXMINHULL <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMINIMAXMINHULL, project="myPortfolio")

and the R/AMPL data file:

> requiredData(modelMINIMAXMINHULL)

[1] "minReturn" "maxReturn" "nReturn" "N" "S"

[6] "Scenarios" "mu" "targetReturn"

> Scenarios <- 100*LPP2005REC[,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- NA

> minReturn <- min(mu)

> maxReturn <- max(mu)

> nReturn <- 33

11.5. HULL 143

> dataMINIMAXMINHULL <- dataAUTO(modelMINIMAXMINHULL)

> amplDataFile(data=dataMINIMAXMINHULL, project="myPortfolio")

Now we are ready to optimize the portfolio and to extract the optimal
weights and the regret values.

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMINIMAXMINHULL <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMINIMAXMINHULL) <- colnames(Scenarios)

> rownames(weightsMINIMAXMINHULL) <- paste0("MINIMAXHULL-", 0:nReturn)

> Return <- weightsMINIMAXMINHULL%*%mu

> Risk <- -colMins(Scenarios%*%t(weightsMINIMAXMINHULL))

Step 2: Maximum regret frontier

Here we write a function that calculates the maximum regret frontier by
pairwise blind calculation and finding the largest line elements afterwards.
We use the minimum regret locus as the input:

> MinimaxHull <- function(mu, Scenarios,Return, Risk) {

Minimum Risks:

minRisks <- Risk

Returns <- risks <- Return

Maximum Risks:

maxRisks <- rep(-Inf, length(Returns))

nAssets <- ncol(Scenarios)

for (i in 1:(nAssets - 1)) {

for (j in (i + 1):nAssets) {

mu2 <- mu[c(i, j)]

Scenarios2 <- Scenarios[, c(i, j)]

Index <- which(Returns >= min(mu2) & Returns <= max(mu2))

if (length(Index) > 0) {

Index <- (1:length(Returns))[Index]

for (k in Index) {

weights <- (Returns[k] - mu2[2])/(mu2[1] - mu2[2])

weights <- c(weights, 1 - weights)

Risk <- -min(Scenarios2%*%weights)

maxRisks[k] <- max(maxRisks[k], Risk) }

}

}

}

Hull:

risk <- c(minRisks, rev(maxRisks[-1])[-1], minRisks[1])

return <- c(Returns, rev(Returns[-1])[-1], Returns[1])

hull <- cbind(Risks = risk, Returns = return)

Return Value:

hull

}

We can now calculate the hull with the minimum regret locus as the func-
tion input:

> hull <- MinimaxHull(mu, Scenarios,Return, Risk)

PART V

MEAN-CDAR DESIGNS

145

11.5. HULL 147

CHAPTER 12

MEAN-CDAR PORTFOLIOS

12.1 INTRODUCTION

In this chapter we introduce the Mean-CDaR Portfolio concept and show
how to solve the following types of portfolios

• CDAR1 - Minimum Risk Mean-CDaR Efficient Portfolio

• CDARGLOB - Global Minimum Risk Efficient Portfolio

• CDAR2 - Maximum Return Mean-CDaR Efficient Portfolio

• CDAREDR - Equi-distant Return Mean-CDaR Frontier

• CDAR3 - Mean-CDaR Critical Line Algorithm

• CDARSORTINO - Reward/CDaR Ratio Portfolio

• CDARDIV - Herfindahl Risk Diversification

• CDARHULL - Mean-CDaR Hull

• CDARSET - Mean-CDaR Feasible Set

In contrast to the mean-variance and mean-CVaR pprtfolio concepts
drawdown risk is a strongly path dependent measure. With the exception
of Brownian motion with zero drift, there is no closed form solution for
the distribution of this measure available, see Douady, Yor, and Shiryaev
et al. [1999], cited by Ghalanos [2005].
The portfolio considered here and its optimization was introduced by
Chekhlov, Uryasev, and Zabarankin [2005]. The concept used by the au-
thors originates from the Conditional Value-at-Risk approach, CVaR. Cheklov
et al. propose a one-parameter family of risk measures defined on the
portfolio’s return sample path and call it Conditional Drawdown-at-Risk,

149

150 MEAN-CDAR PORTFOLIOS

CDaR. Their risk measures depend on the portfolio drawdown or “un-
derwater” curve considered in active portfolio management. For some
value of the tolerance parameterα, the CDaR is defined as the mean of the
worst (1−α) times 100% drawdowns. They also showed that the CDaR risk
function contains the Maximal Drawdown and the Average Drawdown as
its limiting cases.
Please note that although the theoretical definition of the CDaR is well
defined, there exist different techniques to estimate the CDaR, which do
not necessarily yield the exact same value. During this chapter, we will
use the following function to estimate the CDaR from existing portfolio
weights :

> pfolioCDaR <- function (x, weights = NULL, alpha = 0.05)

{

data = as.matrix(cumulated(x))

if (is.null(weights)) {

weights = rep(1/dim(data)[[2]], dim(data)[[2]])

}

n = dim(data)[1]

Rfp = apply(t(t(data) * weights), 1, sum)

downs <- NULL

for (i in 1:length(Rfp)){

downs <- c(downs, Rfp[i]-max(Rfp[1:i]))

}

sorted = sort(downs)

n.alpha = floor(n * alpha)

DaR = sorted[n.alpha]

n.alpha = max(1, floor(n * alpha) - 1)

CDaRplus = mean(sorted[1:n.alpha])

lambda = 1 - floor(n * alpha)/(n * alpha)

ans = - as.vector(lambda * DaR + (1 - lambda) * CDaRplus)

names(ans) = "CDaR"

attr(ans, "control") = c(CDaRplus = -CDaRplus, lambda = lambda)

ans

}

Please also note that in the previous chapters, we multiplied the returns
with 100 to enhance the numerical stability of the calculations. For the
conditional drawdown at risk, it is necessary that the returns are left
unchanged, since the drawdown is dependent on the accumulated wealth.
Any modification in the magnitude of the returns leads to exponential
deviations of the wealth, and therefore drastically decreases the precision
of the portfolio estimation.

In this chapter we show how to implement various flavors of mean-CDaR
portfolios. These include, minimum risk and maximum return formula-
tions, optimal portfolios along the efficient frontier, the calculation of the
hull and the feasible set.1

1Throughout this chapter we use as an example the Swiss pension fund benchmark

12.2. GLOBAL MINIMUM RISK EFFICIENT PORTFOLIO 151

12.2 GLOBAL MINIMUM RISK EFFICIENT PORTFOLIO

Similarly to the CVaR global minimum risk model, we can use linear pro-
gramming to minimize the conditional drawdown at risk within our port-
folio constraints:

min
w ,DaR,x ,u

DaR+
1

αS

S
∑

s=1

xs (12.1)

s .t .

1′w = 1

wi ≥ 0

xs −us +DaR ≥ 0
N
∑

i=1

rs ,i wi +us −us−1 ≥ 0

u0 = 0

xs ≥ 0

Please note that we have to introduce additional variables u to the prob-
lem in order to model the path of the drawdowns.
The R/AMPL model file is then defined similarly to the CDARGLOB model:

> modelCDARGLOB <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param alpha ;",

"var w{1..N} >= 0, default 1/N ;",

"var DaR ;",

"var u{0..S} >= 0 ;",

"var x{1..S} >= 0 ;",

"minimize Objective: DaR + (sum{s in 1..S} x[s]) / (alpha*S) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Risk1{s in 1..S}: x[s] -u[s] + DaR >= 0; ",

"subject to Risk2: u[0] = 0 ;",

"subject to Risk3{s in 2..S}: u[s] - u[s-1] + (sum{i in 1..N} Scenarios[s,i] * w[i]) >= 0 ;")

> amplModelFile(model=modelCDARGLOB, project="myPortfolio")

Again, we use our standard linear run file:

> runCDARGLOB <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

portfolio. The data are part of the Rmetrics package timeSeries and are loaded together
with the fPortfolio package.

152 MEAN-CDAR PORTFOLIOS

"exit ;")

> amplRunFile(run=runCDARGLOB, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file:

> requiredData(modelCDARGLOB)

[1] "N" "S" "Scenarios" "alpha"

> Scenarios <- LPP2005REC[1:200,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> alpha <- 0.05

> dataCDARGLOB <- dataAUTO(model=modelCDARGLOB)

> amplDataFile(data=dataCDARGLOB, project="myPortfolio")

Optimize and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCDARGLOB <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCDARGLOB) <- colnames(Scenarios)

> weightsCDARGLOB

SBI SPI SII LMI MPI ALT

0.000000 0.000000 0.142108 0.845540 0.000000 0.012353

Summarize the results:

> Sigma <- cov(Scenarios)

> SummaryCDARGLOB <- c(

Return = mu %*% weightsCDARGLOB,

CDaR = as.numeric(pfolioCDaR(Scenarios,weightsCDARGLOB,alpha=alpha)[1]),

CovarianceRisk = sqrt (weightsCDARGLOB %*% Sigma %*% weightsCDARGLOB),

HerfindahlIndex = 1 - weightsCDARGLOB %*% weightsCDARGLOB)

> SummaryCDARGLOB

Return CDaR CovarianceRisk HerfindahlIndex

1.4871e-05 2.2240e-02 1.2103e-03 2.6471e-01

12.3. MINIMUM RISK MEAN-CDAR EFFICIENT PORTFOLIOS 153

0.02 0.04 0.06 0.08 0.10 0.12−
1e

−
04

1e
−

04
3e

−
04

5e
−

04
Minimum CDaR Portfolio

CDaR Risk

R
et

ur
ns

●

● Min−CDaR portfolio

FIGURE 12.1: Feasible set and the position of the minimum CDaR portfolio.

12.3 MINIMUM RISK MEAN-CDAR EFFICIENT PORTFOLIOS

To get the efficient mean-CDaR portfolio, we just have to add our target-
return constraint:

154 MEAN-CDAR PORTFOLIOS

min
w ,DaR,x ,u

DaR+
1

αS

S
∑

s=1

xs (12.2)

s .t .

1′w = 1

µ′w ≥ r

wi ≥ 0

xs −us +DaR ≥ 0
N
∑

i=1

rs ,i wi +us −us−1 ≥ 0

u0 = 0

xs ≥ 0

Compose R/AMPL Model File:

> modelCDAR1 <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param targetReturn ;",

"param alpha ;",

"var w{1..N} >= 0, default 1/N ;",

"var DaR ;",

"var u{0..S} >= 0 ;",

"var x{1..S} >= 0 ;",

"minimize Objective: DaR + (sum{s in 1..S} x[s]) / (alpha*S) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to Risk1{s in 1..S}: x[s] -u[s] + DaR >= 0; ",

"subject to Risk2: u[0] = 0 ;",

"subject to Risk3{s in 2..S}: u[s] - u[s-1] + (sum{i in 1..N} Scenarios[s,i] * w[i]) >= 0 ;")

> amplModelFile(model=modelCDAR1, project="myPortfolio")

R/AMPL run file:

> runCDAR1 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"printf \"%16.6f\", Objective > myPortfolio.par ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runCDAR1, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file:

> Scenarios <- LPP2005.RET[1:200, 1:6]

> requiredData(modelCDAR1)

12.3. MINIMUM RISK MEAN-CDAR EFFICIENT PORTFOLIOS 155

[1] "N" "S" "Scenarios" "mu" "targetReturn"

[6] "alpha"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> alpha <- 0.05

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> dataCDAR1 <- dataAUTO(model=modelCDAR1)

> amplDataFile(data=dataCDAR1, project="myPortfolio")

Optimize the CDaR1 model for the grand mean and extract the optimal
weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCDAR1 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCDAR1) <- colnames(Scenarios)

> weightsCDAR1

SBI SPI SII LMI MPI ALT

0.000000 0.087128 0.230992 0.375565 0.000000 0.306315

Summarize the results:

> Sigma <- cov(Scenarios)

> SummaryCDaR1 <- c(

Return = mu %*% weightsCDAR1,

CDaR = as.numeric(pfolioCDaR(Scenarios,weightsCDAR1,alpha=alpha)[1]),

CovarianceRisk = sqrt (weightsCDAR1 %*% Sigma %*% weightsCDAR1),

HerfindahlIndex = 1 - weightsCDAR1 %*% weightsCDAR1)

> SummaryCDaR1

Return CDaR CovarianceRisk HerfindahlIndex

0.00025375 0.03947891 0.00237210 0.70417346

156 MEAN-CDAR PORTFOLIOS

0.02 0.04 0.06 0.08 0.10 0.12−
1e

−
04

1e
−

04
3e

−
04

5e
−

04
Mean−CDaR Portfolio

CDaR Risk

R
et

ur
ns

●

●

●

●

●

Min−CDaR portfolio
Mean−CDaR portfolio
Max−Return portfolio

FIGURE 12.2: Feasible set and the position of an efficient Mean-CDaR portfolio.

12.4 MAXIMUM RETURN MEAN-CDAR EFFICIENT PORTFOLIO

For this case we fix the CDaR risk and maximize the portfolio’s return.
In a similar manner as for the conditional value at risk, we can set the
CDaR as a constraint and maximize the return while keeping the linear
programming approach:

12.4. MAXIMUM RETURN MEAN-CDAR EFFICIENT PORTFOLIO 157

max
w ,V a R ,x ,u

µ′w (12.3)

s .t .

1′w = 1

µ′w ≤ r

xs −us +DaR ≥ 0
N
∑

i=1

rs ,i wi +us −us−1 ≥ 0

u0 = 0

xs ≥ 0

In the R/AMPL file of theCDAR1model we have to interchange the objective
with the return constraints.

> modelCDAR2 <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param targetRisk ;",

"param alpha ;",

"var w{1..N} >= 0, default 1/N ;",

"var DaR ;",

"var u{0..S} >= 0 ;",

"var x{1..S} >= 0 ;",

"maximize Objective: sum{i in 1..N} mu[i] * w[i] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Risk1: DaR + (sum{s in 1..S} x[s]) / (alpha*S) <= targetRisk ;",

"subject to Risk2{s in 1..S}: x[s] -u[s] + DaR >= 0; ",

"subject to Risk3: u[0] = 0 ;",

"subject to Risk4{s in 2..S}: u[s] - u[s-1] + (sum{i in 1..N} Scenarios[s,i] * w[i]) >= 0 ;")

> amplModelFile(model=modelCDAR2, project="myPortfolio")

R/AMPL run file:

> runCDAR2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"printf \"%16.6f\", DaR + (sum{s in 1..S} x[s]) / (alpha*S) > myPortfolio.par ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runCDAR2, project="myPortfolio")

From the portfolio settings we construct the R/AMPL data file. As always,
we use the risk of the portfolio calculated in the CDAR1 approach as target
risk:

158 MEAN-CDAR PORTFOLIOS

> Scenarios <- LPP2005REC[1:200,1:6]

> requiredData(modelCDAR2)

[1] "N" "S" "Scenarios" "mu" "targetRisk"

[6] "alpha"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> alpha <- 0.05

> mu <- colMeans(Scenarios)

> targetRisk <- SummaryCDaR1[2] # Grand mean CDaR Risk

> dataCDAR2 <- dataAUTO(model=modelCDAR2)

> amplDataFile(data=dataCDAR2, project="myPortfolio")

Optimize and extract the optimal weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCDAR2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCDAR2) <- colnames(Scenarios)

> weightsCDAR2

SBI SPI SII LMI MPI ALT

0.00000 0.10053 0.10778 0.42608 0.00000 0.36560

Similary to the CVaR-constrained maximum return portfolio, we only get
approximately the same weights as for the CDaR1-approach:

> weightsCDAR1

SBI SPI SII LMI MPI ALT

0.000000 0.087128 0.230992 0.375565 0.000000 0.306315

This is because of the differences in estimating the CDaR of a portfolio. To
feed the CDaR constraint into the AMPL data file, we use our above defined
pfolioCDaR function. In the AMPL model file, the CDaR constraint might
correspond to a slightly different portfolio since equation 12.3 estimates
the CDaR-value slightly lower than our function. If we would use the
same CDaR-estimator as in the model, we would receive exactly the same
weights.

Summarize the results:

> Sigma <- cov(Scenarios)

> SummaryCDaR2 <- c(

Return = mu %*% weightsCDAR2,

CDaR = as.numeric(scan("myPortfolio.par")),

CovarianceRisk = sqrt (weightsCDAR2 %*% Sigma %*% weightsCDAR1),

HerfindahlIndex = 1 - weightsCDAR2 %*% weightsCDAR2)

> SummaryCDaR2

Return CDaR CovarianceRisk HerfindahlIndex

0.00029553 0.03947900 0.00250585 0.66306384

12.5. EQUI-DISTANT RETURN FRONTIER 159

12.5 EQUI-DISTANT RETURN FRONTIER

To compute a set of optimal mean-CDaR portfolios along the efficient
frontier we divide the frontier in nReturn pieces. The range starts at the
minimum return minReturn given by the worst performing single asset
and ends at the maximum return maxReturn given by the best performing
single asset. Then we use the CDAR1 model with additional parameters
minReturn, maxReturn, and nReturn.

> modelCDAREDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var DaR ;",

"var u{0..S} >= 0 ;",

"var x{1..S} >= 0 ;",

"minimize Objective: DaR + (sum{s in 1..S} x[s]) / (alpha*S) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

"subject to Risk1{s in 1..S}: x[s] -u[s] + DaR >= 0; ",

"subject to Risk2: u[0] = 0 ;",

"subject to Risk3{s in 2..S}: u[s] - u[s-1] + (sum{i in 1..N} Scenarios[s,i] * w[i]) >= 0 ;")

> amplModelFile(model=modelCDAREDR, project="myPortfolio")

or in short:

> modelCDAREDR <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

modelCDAR1)

> amplModelFile(model=modelCDAREDR, project="myPortfolio")

We can use the same run-file as for the CVaR return frontier:

> runCDAREDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let targetReturn := -999;",

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

160 MEAN-CDAR PORTFOLIOS

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runCDAREDR, project="myPortfolio")

In order to get a value for the minReturn-parameter, we solve the prob-
lem first for a target return set to −∞ in order to calculate the expected
return of the minimum risk portfolio. We then define the values for the
minReturn- and maxReturn-parameter. Afterwards, we introduce a loop
and replace the value of r for every iteration.
The data file needs the following input:

> requiredData(modelCDAREDR)

[1] "minReturn" "maxReturn" "nReturn" "N" "S"

[6] "Scenarios" "mu" "targetReturn" "alpha"

> Scenarios <- LPP2005REC[1:200,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> targetReturn <- NA

> minReturn <- NA

> maxReturn <- NA

> nReturn <- 33

> dataCDAREDR <- dataAUTO(modelCDAREDR)

> amplDataFile(data=dataCDAREDR, project="myPortfolio")

Optimize the portfolio and extract weights

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCDAREDR <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsCDAREDR) <- colnames(Scenarios)

> rownames(weightsCDAREDR) <- 1:(nReturn+1)

Summarize the results:

> SummaryEDR <- NULL

> CDaR <- as.numeric(scan("myPortfolio.par"))

> for (i in 0:nReturn) {

summary <- c(

Return = mu %*% weightsCDAREDR[i+1,],

CDaR = as.numeric(pfolioCDaR(Scenarios,weightsCDAREDR[i+1,],alpha=alpha)[1]),

CovarianceRisk = sqrt (weightsCDAREDR[i+1,] %*% Sigma %*% weightsCDAREDR[i+1,]),

HerfindahlIndex = 1 - weightsCDAREDR[i+1,] %*% weightsCDAREDR[i+1,])

SummaryEDR <- rbind(SummaryEDR, summary)

}

12.6. THE CDAR CRITICAL LINE ALGORITHM 161

0.02 0.04 0.06 0.08 0.10 0.12−
1e

−
04

1e
−

04
3e

−
04

5e
−

04
Minimum CDaR Portfolio

CDaR Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

Min−CDaR portfolio
Efficient Frontier portfolios
Max−Return portfolio

FIGURE 12.3: Feasible set and the position of the minimum CDaR portfolio.

12.6 THE CDAR CRITICAL LINE ALGORITHM

See chapter ...

162 MEAN-CDAR PORTFOLIOS

12.7 REWARD/RISK RATIO PORTFOLIO

It is straightforward to define a Reward/Risk ratio for the conditional
drawdown at risk in a similar manner as in the previous chapters:

µ′w

CDaRα(w)
(12.4)

The Reward/Risk ratio portfolio is the portfolio that maximizes this ra-
tio. Similar to the Sharpe ratio, it can be found by the following linear
optimization problem:

min
w ,DaR,x ,t ,u

1

αS

S
∑

s=1

xs +DaR (12.5)

s .t .

1′w = t

µ′w = 1

wi ≥ 0

xs −us +DaR ≥ 0
N
∑

i=1

rs ,i wi +us −us−1 ≥ 0

u0 = 0

xs ≥ 0

R/AMPL model file

> modelCDARRATIO <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"var w{1..N} >= 0, default 1/N ;",

"var DaR ;",

"var x{1..S} >= 0 ;",

"var u{0..S} >= 0 ;",

"var t >= 0 ;",

"minimize Objective: DaR + (sum{s in 1..S} x[s]) / (alpha*S) ;",

"subject to Reward : sum{k in 1..N} mu[k] * w[k] = 1 ;",

"subject to Budget: sum{i in 1..N} w[i] = t ;",

"subject to Risk1{s in 1..S}: x[s] -u[s] + DaR >= 0; ",

"subject to Risk2: u[0] = 0 ;",

"subject to Risk3{s in 2..S}: u[s] - u[s-1] + (sum{i in 1..N} Scenarios[s,i] * w[i]) >= 0 ;")

> amplModelFile(model=modelCDARRATIO, project="myPortfolio")

R/AMPL run file:

12.7. REWARD/RISK RATIO PORTFOLIO 163

> runCDARRATIO <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m]/t > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runCDARRATIO, "myPortfolio")

R/AMPL data file:

> requiredData(modelCDARRATIO)

[1] "N" "S" "Scenarios" "mu" "alpha"

> Scenarios <- LPP2005REC[1:200,1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> dataCDARRATIO <- dataAUTO(modelCDARRATIO)

> amplDataFile(data=dataCDARRATIO, project="myPortfolio")

Optimize and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCDARRATIO <- as.numeric(scan("myPortfolio.txt"))

> names(weightsCDARRATIO) <- colnames(Scenarios)

Summarize

> Sigma <- cov(Scenarios)

> SummaryCDARRATIO <- c(

Return = mu %*% weightsCDARRATIO,

CDaR = as.numeric(pfolioCDaR(weights=weightsCDARRATIO,x=Scenarios,alpha=0.05)[1]),

CovarianceRisk = sqrt (weightsCDARRATIO %*% Sigma %*% weightsCDARRATIO),

HerfindahlIndex = 1 - weightsCDARRATIO %*% weightsCDARRATIO,

Ratio = mu %*% weightsCDARRATIO /(as.numeric(pfolioCDaR(weights=weightsCDARRATIO,x=Scenarios,alpha=0.05)[1])))

> SummaryCDARRATIO

Return CDaR CovarianceRisk HerfindahlIndex Ratio

0.00051037 0.07627366 0.00466697 0.30500496 0.00669133

Plot the Risk/Reward Diagram:

164 MEAN-CDAR PORTFOLIOS

0.00 0.02 0.04 0.06 0.08 0.10 0.12−
1e

−
04

1e
−

04
3e

−
04

5e
−

04
STARR−Ratio Portfolio

CDaR Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●

●

●

●

Min−Risk Portfolio
Efficient Frontier Portfolios
Max−Return Portfolio
STARR−Ratio Portfolio

FIGURE 12.4: Position of the Reward/Risk-Ratio Portfolio

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0.02 0.04 0.06 0.08 0.10 0.12

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

STARR−Ratio along Efficient Frontier

CDaR Risk

R
at

io
s

●

●

●

●

●

●

●

Min−CDaR portfolio
Efficient Frontier portfolios
Max−Return portfolio
STARR−Ratio portfolio

FIGURE 12.5: Reward/Risk-Ratio or Tangency CDaR-Portfolio

12.8. HULL 165

12.8 HULL

In this section we show how to write an R function, that computes the hull
of the unconstrained mean-CDaR portfolio. The hull has a left hand side,
LHS, and a right hand side, RHS. The LHS is composed of the efficient
frontier and the minimum CDaR locus, and the RHS is composed of the
maximum CDaR locus. The LHS is easy to calculate with the help of a
linear programming solver. The RHS is much more complex, i.e. the func-
tion to be optimized is non-convex. Thus we solve the rhs by optimizing
all pairwise portfolios, just like for the Markowitz Portfolio or the MAD
portfolio. The union of the pairwise solutions yields the rhs of the hull.
In the first step we derive the efficient mean-CDaR frontier. Let us start
with the R/AMPL model file. For this we can use the model file from the
CDAREDR (equi-distant return) portfolio.
In the end, compose everything to get the polygon for the mean-CDaR
hull.

> modelCDARMINHULL <- c(

"param N ;",

"param S ;",

"param Scenarios{1..S,1..N} ;",

"param mu{1..N} ;",

"param alpha ;",

"param Return ;",

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"var DaR ;",

"var u{0..S} >= 0 ;",

"var x{1..S} >= 0 ;",

"minimize Objective: DaR + (sum{s in 1..S} x[s]) / (alpha*S) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] = Return ;",

"subject to Risk1{s in 1..S}: x[s] -u[s] + DaR >= 0; ",

"subject to Risk2: u[0] = 0 ;",

"subject to Risk3{s in 2..S}: u[s] - u[s-1] + (sum{i in 1..N} Scenarios[s,i] * w[i]) >= 0 ;")

> amplModelFile(model=modelCDARMINHULL, project="myPortfolio")

To complete the specification we add the R/AMPL run file

> runCDARMINHULL <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"for {i in 0..nReturn} {",

" let Return := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" printf \"%16.12f\", Objective > myPortfolio.par ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

166 MEAN-CDAR PORTFOLIOS

> amplRunFile(run=runCDARMINHULL, project="myPortfolio")

and the R/AMPL data file

> requiredData(modelCDARMINHULL)

[1] "N" "S" "Scenarios" "mu" "alpha" "Return"

[7] "minReturn" "maxReturn" "nReturn"

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> alpha <- 0.05

> Return <- NA

> minReturn <- min(mu)

> maxReturn <- max(mu)

> nReturn <- 33

> dataCDARMINHULL <- dataAUTO(modelCDARMINHULL)

> amplDataFile(data=dataCDARMINHULL, project="myPortfolio")

Now we are ready to optimize the portfolio and to extract the optimal
weights and CDaR value.

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsCDARMINHULL <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsCDARMINHULL) <- colnames(Scenarios)

> rownames(weightsCDARMINHULL) <- 1:(nReturn+1)

> Risk <- NULL

> for (i in 1:(nReturn+1)){

Risk <- c(Risk,

as.numeric(pfolioCDaR(Scenarios,weightsCDARMINHULL[i,],alpha=alpha)[1]))}

> Return <- (mu %*% t(weightsCDARMINHULL))[1,]

The input for the CDaRHull() are the column means (mu) of the assets,
the Scenarios, the percentile α, and the Return and Risk values along
the minimum variance locus and the efficient frontier.

> CDaRHull <- function(mu, Scenarios, alpha, Return, Risk) {

Minimum Risks:

minRisks <- Risk

Returns <- risks <- Return

Maximum Risks:

maxRisks <- rep(-Inf, length(Returns))

nAssets <- ncol(Scenarios)

for (i in 1:(nAssets - 1)) {

for (j in (i + 1):nAssets) {

mu2 <- mu[c(i, j)]

Scenarios2 <- Scenarios[, c(i, j)]

Index <- which(Returns >= min(mu2) & Returns <= max(mu2))

if (length(Index) > 0) {

Index <- (1:length(Returns))[Index]

for (k in Index) {

weights <- (Returns[k] - mu2[2])/(mu2[1] - mu2[2])

weights <- c(weights, 1 - weights)

Risk <- pfolioCDaR(Scenarios2,weights,alpha)[1]

maxRisks[k] <- max(maxRisks[k], Risk) }

12.8. HULL 167

}

}

}

Hull:

risk <- c(minRisks, rev(maxRisks[-1])[-1], minRisks[1])

return <- c(Returns, rev(Returns[-1])[-1], Returns[1])

hull <- cbind(Risks = risk, Returns = return)

Return Value:

hull

}

Now we only have to execute the function with the minimum CDaR locus
as input in order to retrieve the whole hull:

> hull <- CDaRHull(mu, Scenarios, alpha, Return, Risk)

PART VI

DIVERSIFICATION

169

12.8. HULL 171

CHAPTER 13

PORTFOLIO DIVERSIFICATION

13.1 INTRODUCTION

In this chapter we present concepts and ideas for risk parity portfolios.
This includes the following topics:

• Herfindhal diversification

• Entropy diversification

• Dependence diversification

The goal is to diversify the investment or the risk over all individual assets
included in the portfolio as best as possible. Since the measure we have in
mind is the variance of the investment and/or risk budgets we can express
this by a quadratic form that describes the objective portfolio function. In
section 2 we show that the best diversified weights portfolio is the Equal
Weights Diversified (EWD) portfolio. In section 3 we discuss the covari-
ance risk parity (CRP) budgeting problem. The sufficient diversification
portfolio is introduced in section 4. Tail Risk Parity (TRP) budgeting will
be considered in section 5.

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.

> Scenarios <- 100*LPP2005REC[, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

173

174 PORTFOLIO DIVERSIFICATION

The targetReturn for the equal weights portfolio is defined by the grand
mean of the portfolio scenarios, and the targetRisk is defined by the
grand variance of the portfolio. mu is the vector of the sample means of
the assets, and Sigma the sample covariance matrix.

13.2. DIVERSIFICATION 175

13.2 DIVERSIFICATION

For centuries, investment diversification has been a method to reduce the
risk of significant losses. Most investment professionals agree that while
diversification does not guarantee safety from a loss, it is the most im-
portant component to helping investors reach their long-range financial
goals while minimizing their risk.
Under normal circumstances, it is pointless to optimize only the diver-
sification since the maximum diversification portfolio is usually trivial.
Rather than that, the diversification is often taken as an additional con-
straint to the portfolio optimization model. Two obvious choices of im-
plementing diversification constraints are

• constraining the diversification of the maximum-return portfolio

or

• constraining the diversification of a convex risk measure.

Since there exist different risk measures, many combinations between a
risk measure and a diversification measure are possible. Fortunately, it is
very simple to add diversification constraints to an optimization model in
AMPL, since these constraints are independent of remaining problem. We
will explain how to do this for the Herfindhal index, and will then proceed
to give just the implemented diversification constraints.
Another approach is to include the diversification measure into the objec-
tive function. Such approaches are discussed in section

176 PORTFOLIO DIVERSIFICATION

13.3 HERFINDAHL DIVERSIFIED PORTFOLIOS

In this modification of the variance portfolio we search for the best diversi-
fied model with respect to the weights. This is descibed by the Herfindahl
Index, which is a meaure for the variance of the portfolio weights. We get
a best Herfindahl diversified portfolio when the variance of the weights
takes its minimum. This is the same as to minimize the quadratic form
w ′1w instead of the sample covariance matrix.
The globally most diversified portfolio is obviously given by the equal
weights portfolio with wi = 1/N .
Taking the constraint on the sum of the portfolio weights into account,
the Herfindhal index can take numbers between 1 for a the worst diver-
sification (all investment in one asset), and 1/N for the most diversified
portfolio (equal weights portfolio).
We will now demonstrate how the process of adding diversification con-
straints to an existing model works on the example of the markowitz
portfolio to which we add constraints on the portfolio’s Herfindhal index.

Markowitz portfolio with Herfindhal constraints

The Markowitz problem with Herfindhal constraints looks as following:

min
w

w ′Σw (13.1)

s .t .

1′w = 1

wi ≥ 0

w ′w ≤D

(13.2)

where D is the constraint we impose on the diversification. Since the
constraint on the Herfindhal index is a positive-definite constraint, the
problem remains convex.
The R/AMPL Model File for is just the Markowitz model with an additional
constraint:

> modelMVHERF <- c(

Markowitz model

"param N ;",

"param Sigma{1..N,1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] >= 1 ;",

Diversification constraint

"param D ;",

13.3. HERFINDAHL DIVERSIFIED PORTFOLIOS 177

"subject to Diversification: sum{i in 1..N} w[i] * w[i] <= D ;")

> amplModelFile(model=modelMVHERF, project="myPortfolio")

We can also patch the original Markowitz model file and the diversification
constraints together:

> modelMVHERF <- c(

modelMVGLOB,

"param D ;",

"subject to Diversification: sum{i in 1..N} w[i] * w[i] <= D ;")

> amplModelFile(model=modelMVHERF, project="myPortfolio")

We see that we can introduce the diversification constraint on our portfolio
independent of the chosen risk measure.
Since both the diversification and the risk are quadratic in w , as usual we
use the CPLEX-solver:

> runMVHERF <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"solve ;",

"for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMVHERF, project="myPortfolio")

Construct the R/AMPL Data File with the desired parameters. Remember
that the Herfindhal index can take values between 1 and 1/N . Thus an
appropriate value for our diversification constraint to ensure a sufficient
diversification is D = 1/N ·1.5:

> Scenarios <- 100*LPP2005REC[, 1:6]

> requiredData(modelMVHERF)

[1] "N" "Sigma" "D"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> D <- 1/N *1.5

> dataMVHERF <- dataAUTO(modelMVHERF)

> amplDataFile(data=dataMVHERF, project="myPortfolio")

Optimize the Portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVHERF <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMVHERF) <- colnames(Scenarios)

Return-Diversification portfolio:

Instead of minimizing a risk measure while constraining the diversifi-
cation, we can also maximize the expected return. This is exactly the same
approach as when constraining the risk while maximizing the expected
return:

178 PORTFOLIO DIVERSIFICATION

min
w

w ′µ (13.3)

s .t .

1′w = 1

wi ≥ 0

w ′w ≤D

The R/AMPL Model file looks as following:

> modelHERF2 <- c(

"param N ;",

"param mu{1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"maximize Objective: sum{i in 1..N} w[i] * mu[i] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

Diversification constraint

"param D ;",

"subject to Diversification: sum{i in 1..N} w[i] * w[i] <= D ;")

> amplModelFile(model=modelHERF2, project="myPortfolio")

Again, we just attached the diversification constraints to an existing model
file.
R/AMPL Run File:

> runHERF2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runHERF2, project="myPortfolio")

Again, we choose the same value for the diversification constraint:

> requiredData(modelHERF2)

[1] "N" "mu" "D"

> Scenarios <- 100*LPP2005REC[,1:6]

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> D <- 1/N*1.5

> dataHERF2 <- dataAUTO(modelHERF2)

> amplDataFile(data=dataHERF2, project="myPortfolio")

Optimize the Portfolio and extract the weights:

13.3. HERFINDAHL DIVERSIFIED PORTFOLIOS 179

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsHERF2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsHERF2) <- colnames(Scenarios)

> weightsHERF2

SBI SPI SII LMI MPI ALT

0.022213 0.304614 0.102275 0.040644 0.220292 0.309961

Since the addition of diversification constraints is independent of the
original portfolio model, naturally, this procedure was exactly the same
as for the Markowitz problem.
Efficient Frontier calculation:

Since the constraints on our portfolio are now imposed on the diverifica-
tion instead of the expected return, our AMPL run file for computing the
efficient frontier now changes. We now have to loop over different target
values for the diversification instead of the expected return.
Naturally, we again have to add the three usual parameters minimum
value, maximum value and number of steps, to describe the loop to our
model:

> modelMVHERFEF <- c(

"param minD ;",

"param maxD ;",

"param nD ;",

modelMVHERF)

> amplModelFile(model=modelMVHERFEF, project="myPortfolio")

In our AMPL run file, we now have to replace the expected return with
the constraint on the diversification. For that, we first have to find and
specify the maximum and the minimum value for the Herfindhal index.
The minimum value is of course given by 1/N . To find the maximum
value, we set the constraint value very high such that the portfolio is not
constrained anymore, and then solve the portfolio. We can then loop the
diversification constraint between these two values:

> runMVHERFEF <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let D := 1;",

"solve;",

"let maxD := log(sum{i in 1..N} w[i]*w[i]) ;",

"let minD := log(1/N) ;",

"for {i in 0..nD} {",

" let D := exp(minD + i*(maxD-minD)/nD) ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMVHERFEF, project="myPortfolio")

180 PORTFOLIO DIVERSIFICATION

We have to specify the data file:

> requiredData(modelMVHERFEF)

[1] "minD" "maxD" "nD" "N" "Sigma" "D"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> D <- NA

> minD <- NA

> maxD <- NA

> nD <- 20

> dataMVHERFEF <- dataAUTO(modelMVHERFEF)

> amplDataFile(data=dataMVHERFEF, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVHERFEF <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMVHERFEF) <- colnames(Scenarios)

> rownames(weightsMVHERFEF) <- paste0("MVHERFEF-", 0:nD)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Covariance Risk

R
et

ur
n

Herfindhal Diversification

●

●
●

●
●

●●●●●●●●●●●●●●●●

●

●

●
●

●
●

●
●

●
●●
●●

●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

Efficient Var−Div portfolios
Efficient Return−Div portfolios
Min−Var portfolio
Max−Return portfolio
Equal weights portfolio

FIGURE 13.1: Herfindahl Diversification line of weights. The portfolios with our chosen target
diversification of 1/N ·1.5 are depicted by the two black dots.

13.3. HERFINDAHL DIVERSIFIED PORTFOLIOS 181

As we have seen, it is very easy to add diversification constraints to an
existing portfolio model. In the following, we will only give the necessary
AMPL code to implement these constraints for different diversification
models, as well as the particular AMPL run file to compute the efficient
frontier.

182 PORTFOLIO DIVERSIFICATION

13.4 ENTROPY DE-CONCENTRATED PORTFOLIOS

Another useful diversification measure is the entropy of the weights. Orig-
inating from thermodynamics, in order to improve the diversification of
our portfolio, we can maximize the weight’s entropy, i.e.

min
w

N
∑

i

wi log(wi) (13.4)

limw→0 w log(w) converges to 0, but the function is not actually defined
on 0 because of the logarithm term. In order to prevent any computational
errors, we will add 10−14 to the weight inside the logarithm. This will have
no noticable effect on the function, but ensures that the function is defined
(and equal to zero) for w = 0.
The entropy values span from 0 for the most concentrated portfolio
(one-asset portfolio) l o g (1/N) for the most diversified portfolio (equal-
weights portfolio).
The AMPL entropy constraints are simply given by the following two AMPL
lines:

> ConstraintsEnt <- c(

"param D ;",

"subject to Diversification: sum{i in 1..N} w[i] * log(w[i]+10e-6) <= D ;")

Please keep in mind that due to the logarithm, this constraint is of non-
linear nature and requires a non-linear solver such as minos.
To find the corresponding AMPL run file for the efficient frontier, we just
replace the Herfindhal index in the specification of the maxD-parameter
with the entropy, and adjust the other values to be in the right range:

> runEntEF <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos;",

"let D := 0;",

"solve;",

"let maxD := sum{i in 1..N} w[i] * log(w[i]+10e-6) ;",

"let minD := log(1/N) ;",

"for {i in 0..nD} {",

" let D := minD + i*(maxD-minD)/nD ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

13.5. DEPENDENCE DIVERSIFIED PORTFOLIOS 183

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Covariance Risk

R
et

ur
n

Entropy Diversification

●
●

●
●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●

●
●
●●●

●●
●●●
●●●●●

●

●

●●

●

●

●

●

●

●

●

Efficient Var−Div portfolios
Efficient Return−Div portfolios
Min−Var portfolio
Max−Return portfolio
Equal weights portfolio

FIGURE 13.2: Entropy Diversification line of weights.

13.5 DEPENDENCE DIVERSIFIED PORTFOLIOS

The aim of the dependence diversification approach is to reduce the total
dependence between the individual assets in the portfolio. Most concepts
of dependence are usually measured by a matrix product, such as the
Pearson correlation:

ρ =w ′Pw (13.5)

Another example of portfolio dependence is the pairwise tail dependence
portfolio model. It was introduced by Würtz et al. [20xx]. A convenient
way to compute the tail dependency of a portfolio is by using the function
gldDependencyFit from the R-package fPortfolio:

> require(fCopulae)

> require(fPortfolio)

184 PORTFOLIO DIVERSIFICATION

> Scenarios <- 100*LPP2005REC[,1:6]

> TailDepMatrix <- gldDependencyFit(Scenarios,

doplot=FALSE,trace=FALSE)$lower+

diag(1, nrow=6)

> TailDepMatrix

SBI SPI SII LMI MPI ALT

SBI 1.000000 0.00000 0.041913 0.215355 0.018325 0.00000

SPI 0.000000 1.00000 0.000000 0.000000 0.356763 0.36039

SII 0.041913 0.00000 1.000000 0.084666 0.000000 0.00000

LMI 0.215355 0.00000 0.084666 1.000000 0.015633 0.00000

MPI 0.018325 0.35676 0.000000 0.015633 1.000000 0.46247

ALT 0.000000 0.36039 0.000000 0.000000 0.462469 1.00000

The exact procedure to estimate the tail dependency would extend the
scope of this handbook. For further information, see
A dependence matrix is generally positive semi-definite, therefore the
portfolio dependence is always bigger than 0. The most diversified port-
folio in terms of dependence is not trivial, but depends on the particular
asset distributions. Therefore the dependence value for the most diver-
sified portfolio has to be found via optimization. This can be done by
just replacing the covariance matrix in the Markowitz approach with the
particular dependence matrix.
The value for the most dependent portfolio is always given by 1. This value
always realized for a one-asset portfolio.
The constraint is very simple:

> ConstraintsDep <- c(

"param D ;",

"param Rho{1..N,1..N} ;",

"subject to Diversification:

sum{i in 1..N} sum{j in 1..N} w[i] *Rho[i,j]*w[j] <= D ;")

Please keep in mind that this is a quadratic constraint, and not all solvers
are capable of solving problems with quadratic constraints.
Unlike before, we do not know the value of the most diversified portfolio
for dependence diversification a priori. Therefore our AMPL Run script
might terminate while calculating the efficient frontier, when we feed
our model a too low constraint value such that the problem becomes
infeasible. To prevent that, we can set the AMPL option eexit to a positive
value. The loop now skips iteration steps that are infeasible. We also have
to add the condition that the portfolio weights are only printed when the
problem was feasible:

> runDepEF <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"let D := 1;",

"solve;",

"option eexit 1 ;",

13.5. DEPENDENCE DIVERSIFIED PORTFOLIOS 185

"let maxD := sum{i in 1..N} sum{j in 1..N} w[i] * Rho[i,j]* w[j] ;",

"let minD := 0 ;",

"for {i in 0..nD} {",

" let D := minD + i*(maxD-minD)/nD ;",

" solve ;",

" if solve_result_num == 0 then ",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Covariance Risk

R
et

ur
n

Dependence Diversification

●
●

●
●●●●●●●●●●●●●●●●

●

●

●
●

●
●

●
●

●
●

●
●●●●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

Efficient Var−Div portfolios
Efficient Return−Div portfolios
Min−Var portfolio
Max−Return portfolio

FIGURE 13.3: Tail dependence Diversification line of weights.

CHAPTER 14

COVARIANCE RISK PARITY

14.1 INTRODUCTION

Covariance risk parity is the keyword when it comes to the managing of
risk exposures using the risk budgeting approach. For an introduction we
refer the article of Benjamin Bruder and Thierry Roncalli [2012].
Instead of diversifying the portfolio weights, in this approach we try to
diversify the contributions of individual assets to the total covariance risk.
The covariance risk contributions are defined as following:

bi :=
wi (Σw)i

w ′Σw

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.

> Scenarios <- 100*LPP2005REC[, 1:6]

> N <- ncol(Scenarios)

> S <- nrow(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

The targetReturn for the equal weights portfolio is defined by the grand
mean of the portfolio scenarios, and the targetRisk is defined by the
grand variance of the portfolio. mu is the vector of the sample means of
the assets, and Sigma the sample covariance matrix.

187

188 COVARIANCE RISK PARITY

14.2 RISK PARITY PORTFOLIO

The most diversified portfolio is the Equal-Risk-Contribution portfolio
(ERC) with bi = 1/N . If we use the Herfindhal-index to measure the diver-
sification of the Risk Budgets, we can write our model as

min
w

N
∑

i=1

(wi (Σw)i −
w ′Σw

N
)2

s .t .

µ′w ≥ r

wi ≥ 0

A computationally more simple method to solve this problem is to add
another variable to the expression to replace the average risk contribution:

min
w ,θ

N
∑

i=1

(wi (Σw)i −θ)2

s .t .

µ′w ≥ r

wi ≥ 0

These two problems are equivalent and yield the same results. Due to the
less complex formulation, the latter one is significantly faster to solve.
We can now define the AMPL model file:

> modelPARITY <- c(

"param N ;",

"param Sigma{1..N, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"var Theta ;",

"minimize Objective: sum{k in 1..N} (w[k] * sum{j in 1..N} Sigma[k,j] * w[j] - Theta)^2 ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;")

> amplModelFile(model=modelPARITY, project="myPortfolio")

Please note that the model is non-linear and requires a solver capable of
solving non-linear problems such as MINOS:

> runPARITY <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos;",

"solve ;",

"for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runPARITY, project="myPortfolio")

14.2. RISK PARITY PORTFOLIO 189

Construct the R/AMPL Data File with the desired parameters.

> Scenarios <- 100*LPP2005REC[, 1:6]

> requiredData(modelPARITY)

[1] "N" "Sigma"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> dataPARITY <- dataAUTO(modelPARITY)

> amplDataFile(data=dataPARITY, project="myPortfolio")

Optimize the Portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsPARITY <- as.numeric(scan("myPortfolio.txt"))

> names(weightsPARITY) <- colnames(Scenarios)

> weightsPARITY

SBI SPI SII LMI MPI ALT

0.332104 0.042509 0.144077 0.376393 0.045027 0.059890

Finally, we summarize our results:

> mu <- colMeans(Scenarios)

> SummaryPARITY <- c(

TargetReturn = mu %*% weightsPARITY,

CovarianceRisk = sqrt (weightsPARITY %*% Sigma %*% weightsPARITY),

HerfindahlIndex = 1 - weightsPARITY %*% weightsPARITY)

> SummaryPARITY

TargetReturn CovarianceRisk HerfindahlIndex

0.016912 0.119612 0.719856

190 COVARIANCE RISK PARITY

14.3 EFFICIENT RISK-PARITY PORTFOLIO

To compute the efficient risk-parity portfolio, we just add the constraint
on the expected return:

min
w ,θ

N
∑

i=1

(wi (Σw)i −θ)2

s .t .

1′w = 1

µ′w ≥ r

wi ≥ 0

We have to add the µ-vector as well as the the target return as parameters
to our AMPL model before adding the constraint on the expected return:

> modelPARITY1 <- c(

"param N ;",

"param Sigma{1..N, 1..N} ;",

"var w{1..N} >= 0, default 1/N ;",

"var Theta ;",

"minimize Objective: sum{k in 1..N} (w[k] * sum{j in 1..N} Sigma[k,j] * w[j] - Theta)^2 ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"param mu{1..N} ;",

"param targetReturn ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelPARITY1, project="myPortfolio")

> runPARITY1 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos;",

"solve ;",

"for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runPARITY1, project="myPortfolio")

Construct the R/AMPL Data File with the desired parameters. As usual,
we optimize for the grand-mean as the target return:

> Scenarios <- 100*LPP2005REC[, 1:6]

> requiredData(modelPARITY1)

[1] "N" "Sigma" "mu" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> dataPARITY1 <- dataAUTO(modelPARITY1)

> amplDataFile(data=dataPARITY1, project="myPortfolio")

14.3. EFFICIENT RISK-PARITY PORTFOLIO 191

Optimize the Portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsPARITY1 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsPARITY1) <- colnames(Scenarios)

> weightsPARITY1

SBI SPI SII LMI MPI ALT

0.000000 0.119946 0.436322 0.162807 0.091326 0.189599

Finally, we summarize our results:

> mu <- colMeans(Scenarios)

> SummaryPARITY1 <- c(

TargetReturn = mu %*% weightsPARITY1,

CovarianceRisk = sqrt (weightsPARITY1 %*% Sigma %*% weightsPARITY1),

HerfindahlIndex = 1 - weightsPARITY1 %*% weightsPARITY1)

> SummaryPARITY1

TargetReturn CovarianceRisk HerfindahlIndex

0.043077 0.286121 0.724442

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Covariance Risk Parity Portfolio

Covariance Risk

R
et

ur
ns

●

●

●

●

Risk−Parity portfolio
Efficient Risk−Parity portfolio

FIGURE 14.1: Feasible set and the position of covariance risk-parity portfolio as well as the
efficient covariance risk-parity portfolio.

192 COVARIANCE RISK PARITY

14.4 EFFICIENT FRONTIER

The computation of the mean-risk-parity efficient frontier is very similar
to the Markowitz efficient frontier computation. First, we add the three
necessary looping parameters to our model file:

> modelPARITYEF <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

modelPARITY1)

> amplModelFile(model=modelPARITYEF, project="myPortfolio")

We can use the same run-file as for the Markowitz efficient frontier, al-
though we have to replace the specified solver with a non-linear solver:

> runPARITYEF <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos;",

"let targetReturn := -999;",

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;", " solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runPARITYEF, project="myPortfolio")

We have to specify the exact same parameters as for the Markowitz efficient
frontier:

> requiredData(modelPARITYEF)

[1] "minReturn" "maxReturn" "nReturn" "N" "Sigma"

[6] "mu" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- NA

> minReturn <- NA

> maxReturn <- NA

> nReturn <- 30

> dataPARITYEF <- dataAUTO(modelPARITYEF)

> amplDataFile(data=dataPARITYEF, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsPARITYEF <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsPARITYEF) <- colnames(Scenarios)

> rownames(weightsPARITYEF) <- paste0("PARITYEF-", 0:nReturn)

Plot the Risk/Reward Diagram:

14.4. EFFICIENT FRONTIER 193

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Covariance Risk

R
et

ur
n

Parity Diversification

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

Efficient Risk−Parity portfolios
Risk−Parity portfolio
Max−Return portfolio

FIGURE 14.2: Equi-distant return frontier for the Covariance Risk-Parity portfolio

PART VII

MULTIOBJECTIVE PROGRAMMING

195

14.4. EFFICIENT FRONTIER 197

CHAPTER 15

MULIT-OBJECTIVE VARIANCE PORTFOLIOS

15.1 INTRODUCTION

In this chapter ...
We will show the implementation and the scaling of multi-objective port-
folio models.

15.2 CRITICAL LINE ALGORITHM

A different approach to portfolio optimization, named the critical line
algorithm, takes in the objective function both return and risk into account.
For the Mean-Variance portfolio, an implementation looks as following:

max
w
(1−λ)µ′w −λw ′Σw

s .t .

1′w = 1

wi ≥ 0

Here λ is a risk aversion parameter and is allowed to take values between
zero and one. If λ= 1 then we minimize the risk, if λ= 0 then we optimize
the return.

The AMPL model file is very easy to implement:

> modelMV3 <- c(

"param N ;",

"param lambda ;",

"param mu{1..N} ;",

"param L ;",

"param Sigma{1..N, 1..N} ;",

199

200 MULIT-OBJECTIVE VARIANCE PORTFOLIOS

"var w{1..N} >= 0, default 1/N;",

"maximize Objective: (1-lambda) * sum{i in 1..N} mu[i] * w[i] - ",

" lambda * sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;")

> amplModelFile(model=modelMV3, project="myPortfolio")

What is an appropriate value for λ? Note that if λ= 1 the critical line algo-
rithm searches for the global minimum risk portfolio, and on the opposite
hand, whenλ= 0 the solution for the portfolio is the asset with the highest
individual return.

When we want to calculate the efficient frontier, we have to modify our
AMPL run file, since now we are looping over λ and not r anymore:

> runMV3 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"for {i in 0..L} {",

" let lambda := i/L ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMV3, project="myPortfolio")

The run file optimizes a fixed number of portfolios (here 34) along the
critical line. The loop is part of the run file, this makes the optimization
most time efficient.
Finally, do not forget to declare λ as an additional parameter in the AMPL
data file. Set the value to NA since the parameter is defined inside the run
file.

> Scenarios <- 100*LPP2005REC[,1:6]

> requiredData(modelMV3)

[1] "N" "lambda" "mu" "L" "Sigma"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

> lambda <- NA

> L <- 33

> dataMV3 <- dataAUTO(modelMV3)

> amplDataFile(data=dataMV3, project="myPortfolio")

Optimize the Portfolio:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV3 <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMV3) <- colnames(Scenarios)

15.2. CRITICAL LINE ALGORITHM 201

Plot the result in a risk/return diagram:

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

MV Critical Line Algorithm

Covariance Risk

R
et

ur
ns

●●●●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

Min−var portfolio
Efficient frontier portfolios
Max−return portfolio

FIGURE 15.1: Critical line algorithm vean-variance portfolio

Only 3 points are well separated, the remaining 31 are agglomerated very
close together. The reason for this is that the two objectives for the return
and risk are not well scaled.

Let us consider a better scaling by introducing the scaling parameters
Norm1 and Norm2. These will normalize the maximal change in the com-
ponents (the expected return and the covariance risk) of the objective
function to be equal to one:

> modelMV3SCALED <- c(

"param N ;",

"param lambda ;",

"param L ;",

"param mu{1..N} ;",

"param Sigma{1..N, 1..N} ;",

"param Norm1 ;",

"param Norm2 ;",

202 MULIT-OBJECTIVE VARIANCE PORTFOLIOS

"var w{1..N} >= 0, default 1/N;",

"maximize Objective: (1-lambda) * (sum{i in 1..N} mu[i] * w[i])/(Norm1) ",

" -lambda*(sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j])/(Norm2) ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;")

> amplModelFile(model=modelMV3SCALED, project="myPortfolio")

We presolve the portfolio forλ= 1 in order to measure the maximal change
of the risk and the expected return. We only have to do this for λ= 1 in
order to find the minimum variance portfolio since the maximum return
portfolio is trivial. We can then specify our scaling parameters:

> runMV3SCALED <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"set I ordered := {s in 1..N: mu[s] == max{i in 1..N} mu[i]} ;",

"let Norm1 := mu[first(I)] ;",

"let Norm2 := Sigma[first(I),first(I)] ;",

"let lambda :=1 ;",

"solve ;",

"let Norm1 := Norm1 - sum{i in 1..N} mu[i] * w[i] ;",

"let Norm2 := Norm2 - sum{i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j] ;",

"for {i in 0..L} {",

" let lambda := i/L ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMV3SCALED, project="myPortfolio")

We have to add the scaling parameters to the AMPL data file:

> Scenarios <- 100*LPP2005REC[,1:6]

> requiredData(modelMV3SCALED)

[1] "N" "lambda" "L" "mu" "Sigma" "Norm1" "Norm2"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

> lambda <- NA

> L <- 33

> Norm1 <- NA

> Norm2 <- NA

> dataMV3SCALED <- dataAUTO(modelMV3SCALED)

> amplDataFile(data=dataMV3SCALED, project="myPortfolio")

Optimize the portfolio:s

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV3SCALED <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=6)

> colnames(weightsMV3SCALED) <- colnames(Scenarios)

Plot the Results:

The portfolios are now buch better distributed along the efficient frontier.

15.3. MEAN - COVARIANCE - ENTROPY DIVERSIFICATION 203

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

MV Critical Line Algorithm

Covariance Risk

R
et

ur
ns

●●●●●●●●●●●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●●●

●
●

●

●

Min−var portfolio
Efficient frontier portfolios
Max−return portfolio

FIGURE 15.2: Critical line algorithm vean-variance portfolio

15.3 MEAN - COVARIANCE - ENTROPY DIVERSIFICATION

Obviously, we can add more than two portfolio measures into the objec-
tive function instead of constraining them in constraints. As an example
for a multi-objective portfolio design, we look at the simultaneuous opti-
mization of the expected return, the portfolio variance and the portfolio
diversification, characterized by the entropy diversification measure. Our
optimal portfolios are then spanned between the minimum variance port-
folio, the maximum return portfolio and the equal weights portfolio.

We have to introduce an additional parameter λ2 in order to quantify our
emphasis on the diversification. It is natural to then impose the condition
that λ1+λ2 ≤ 1. The mathematical formulation then looks as following:

204 MULIT-OBJECTIVE VARIANCE PORTFOLIOS

max
w
(1−λ1−λ2)µ

′w −λ1w ′Σw −λ2

N
∑

i

wi log(wi)

s .t .

1′w = 1

wi ≥ 0

In the implementation, we will add another scaling parameter Norm3 in
order to scale the entropy diversification:

> modelMV4 <- c(

"param N ;",

"param lambda1 ;",

"param lambda2 ;",

"param L ;",

"param mu{1..N} ;",

"param Sigma{1..N, 1..N} ;",

"param Norm1 ;",

"param Norm2 ;",

"param Norm3 ;",

"var w{1..N} >= 0, default 1/N;",

"maximize Objective: (1-lambda1-lambda2) * (sum{i in 1..N} mu[i] * w[i]) / Norm1",

"-lambda1 * (sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j]) / Norm2 ",

"-lambda2* (sum{i in 1..N} w[i] * log(w[i]+10e-6)) / Norm3 ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;")

> amplModelFile(model=modelMV4, project="myPortfolio")

We use the same approach in the AMPL run file to set our scaling param-
eters. Since the equal weights portfolio is trivial, we again only have to
presolve the portfolio for λ1 = 1 in order to find the minimum variance
portfolio. For more complicated diversification measures, we might have
to presolve again for λ2 = 1 in order fully estimate the maximal change of
the risk, the expected return and the diversification.
We can then easily find the maximum change of the risk, the expected
return and the diversification, and set our scaling parameters:

> runMV4 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos;",

"set I ordered := {s in 1..N: mu[s] == max{i in 1..N} mu[i]} ;",

"let Norm1 := mu[first(I)] ;",

"let Norm2 := Sigma[first(I),first(I)] ;",

"let Norm3 := -log(1/N) ;",

"let lambda1 :=1 ;",

"let lambda2 :=0 ;",

"solve ;",

"let Norm1 := Norm1 - min(sum{i in 1..N} mu[i] * w[i], sum{i in 1..N} mu[i] /N) ;",

15.3. MEAN - COVARIANCE - ENTROPY DIVERSIFICATION 205

"let Norm2 := Norm2

- max(sum{i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j],

1/N^2 sum{i in 1..N} sum{j in 1..N} Sigma[i,j]);",

"for {i in 0..L} {",

"for {j in 0..(L-i)}{",

" let lambda1 := i/L ;",

" let lambda2 := j/L ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"}};",

"exit ;")

> amplRunFile(run=runMV4, project="myPortfolio")

Add the two additional parameters λ2 and Norm3 to the AMPL Data File:

> Scenarios <- 100*LPP2005REC[,1:6]

> requiredData(modelMV4)

[1] "N" "lambda1" "lambda2" "L" "mu" "Sigma" "Norm1"

[8] "Norm2" "Norm3"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

> lambda1 <- NA

> lambda2 <- NA

> L <- 20

> Norm1 <- NA

> Norm2 <- NA

> Norm3 <- NA

> dataMV4 <- dataAUTO(modelMV4)

> amplDataFile(data=dataMV4, project="myPortfolio")

Optimize the Portfolio:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV4 <- matrix(as.numeric(scan("myPortfolio.txt")), byrow=TRUE, ncol=N)

> colnames(weightsMV4) <- colnames(Scenarios)

Plot the Results:

206 MULIT-OBJECTIVE VARIANCE PORTFOLIOS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Multiobjective Markowitz optimization

Covariance Risk

R
et

ur
ns

●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●

●
●

●

●

Min−var portfolio
Max−return portfolio
EW−portfolio

FIGURE 15.3: Critical Line Algorithm Mean-Variance Benchmark Portfolio

PART VIII

CONSTRAINTS

207

15.3. MEAN - COVARIANCE - ENTROPY DIVERSIFICATION 209

CHAPTER 16

CONSTRAINED PORTFOLIOS

16.1 INTRODUCTION

In this chapter we optimize the efficient mean-variance Markowitz port-
folio with box and/or group constraints. This includes

• short selling constraints,

• box constraints ,

• group constraints

• turnover constraints

• tracking error constraints

Section 2 shows how to add box constraints. In section 3 we discuss how to
add group constraints. And in section 4 we combine both, box and group
constraints. Note, although all examples use the efficient mean-variance
portfolio, the principle of adding box and/or group constraints holds for
other types of portfolios: the global minimum risk portfolio, portfolios op-
timized by the critical line algorithms, robust portfolios, and many others.

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.

211

212 CONSTRAINED PORTFOLIOS

16.2 SHORT SELLING PORTFOLIOS

Let us consider the unconstrained short selling portfolio. We have no
longer any constraints on the individual weights. In other words, short
selling will be allowed regardless of a desired target risk or target return.
The budget 1′w = 1 is fully invested, and this is the only constraint. We
call this portfolio problem the unrestricted short selling problem.

If we consider the unconstrained short selling mean-variance Markowitz
portfolio, the problem reads:

min
w

w ′Σw

s .t .

1′w = 1

µ′w = r̄

The only difference to the long-only portfolio model is the lack of the
wi ≥ 0 constraint.
Let us look again at the MV1 implementation:

> modelMV1 <- c(

"param N ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

In the R/AMPL model file for the unrestricted short selling Markowitz
problem, we only have to change the following line:

> "var w{1..N}>=0, default 1/N ;"

The R/AMPL model file becomes:

> modelMV1SS <- c(

"param N ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N}, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;")

> amplModelFile(model=modelMV1SS, project="myPortfolio")

16.2. SHORT SELLING PORTFOLIOS 213

Both the R/AMPL Run File as well as the Data File stay the same as for the
long-only portfolio problem MV1:
R/AMPL Run File:

> runMV1SS <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runMV1SS, "myPortfolio")

R/AMPL Data File:

> Scenarios <- 100*LPP2005REC[,1:6]

> requiredData(modelMV1SS)

[1] "N" "mu" "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> dataMV1SS <- dataAUTO(modelMV1SS)

> amplDataFile(data=dataMV1SS, project="myPortfolio")

Optimize it and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV1SS <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMV1SS) <- colnames(Scenarios)

> weightsMV1SS

SBI SPI SII LMI MPI ALT

-0.225673 0.073365 0.218793 0.706155 -0.309798 0.537157

The implementation of short-selling portfolios is not restricted to just the
Markowitz portfolio. For every risk measure, we can remove the wi ≥ 0-
condition in the R/AMPL model file to allow short-selling.

Efficient Frontier

It is very straightforward to implement the EDR-approach for the short-
selling portfolio model. Again we again just add the additional parameters
to the unresticted R/AMPL model file:

> modelMVEDRSS <- c(

"param minReturn ;",

"param maxReturn ;",

"param nReturn ;",

modelMV1SS)

> amplModelFile(model=modelMVEDRSS, project="myPortfolio")

The R/AMPL run file is as usual the same as for the long-only approach. If
we would like to compute the efficient frontier for non-linear risk measure,

214 CONSTRAINED PORTFOLIOS

we might have to replace the solver specification with the appropriate
solver.

> runMVEDRSS <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver minos;",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runMVEDRSS, project="myPortfolio")

Again we use the already calculated return of the Global Minimum Vari-
ance portfolio as the minimal target return.
A big difference to the long-only approach is the fact that the short-selling
model can achieve higher return expections than the long-only approach.
In fact, there is no limit on the expected return. Therefore we just pick a
value in order to specify the maximum target return in the data file. The
R/AMPL Data File then reads:

> requiredData(modelMVEDRSS)

[1] "minReturn" "maxReturn" "nReturn" "N" "mu"

[6] "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- NA

> minReturn <- (mu %*% weightsMVGLOB)[1]

> maxReturn <- 1.25*max(mu)

> nReturn <- 33

> dataMVEDRSS <- dataAUTO(modelMVEDRSS)

> amplDataFile(data=dataMVEDRSS, project="myPortfolio")

In figure 16.1 we can see the efficient frontier for the short selling model:

16.3. BOX CONSTRAINED MARKOWITZ PORTFOLIO 215

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Shortselling Frontier

Covariance Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

Min−Var portfolio
Shortselling portfolios
Max−Return portfolio

FIGURE 16.1: Short-selling Efficient Markowitz Frontier

16.3 BOX CONSTRAINED MARKOWITZ PORTFOLIO

Box constraints are used to confine the values the individual asset weights
can take. For instance, if an investor does not want to invest more than
30% in one asset, and wants to invest at least 10 % in another asset, he
can impose box constrains on these assets.

Box constraints consist of an upper bound vector and a lower bound
vector. Each entry of these vectors specifies the upper/lower bound of the
corresponding asset. For example, the Markowitz portfolio model with
box constraints can by written as following:

216 CONSTRAINED PORTFOLIOS

min
w

w ′Σw

s .t .

1′w = 1

li ≤wi ≤ ui (16.1)

µ′w = r̄

li and ui are the vectors of lower and upper bound on the weights.
To construct our model file, we only have to add the additional constraints
to the existing long-only Markowitz portfolio model that we specified
above:

> modelMV1BOX <- c(

#Original model

"param N ;",

"param mu{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

"subject to Return: sum{i in 1..N} mu[i] * w[i] >= targetReturn ;",

Box Constraints

"param lower{1..N} ;",

"param upper{1..N} ;",

"subject to Lower {i in 1..N}: w[i] >= lower[i] ;",

"subject to Upper {i in 1..N}: w[i] <= upper[i] ;")

> amplModelFile(model=modelMV1BOX, project="myPortfolio")

or in short:

> modelMV1BOX <- c(

modelMV1,

"param lower{1..N} ;",

"param upper{1..N} ;",

"subject to Lower {i in 1..N}: w[i] >= lower[i] ;",

"subject to Upper {i in 1..N}: w[i] <= upper[i] ;")

> amplModelFile(model=modelMV1BOX, project="myPortfolio")

As for the diversification constraints, the box constraints are independent
of the chosen risk measure or the existing portfolio model. We can just
attach the constraints to the existing portfolio model.
The R/AMPL run file is the the same as for the MV1 model without box
constraints:

> runMV1BOX <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

16.3. BOX CONSTRAINED MARKOWITZ PORTFOLIO 217

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(runMV1BOX, "myPortfolio")

Let us take as an example the constraints that will take on the following
values: Swiss Equities SPI max 40%, Foreign Equities MPI and Swiss Real
Estate SII max 30%, Alternative Instruments ALT max 10%, and Swiss SBI
at least 20%. Foreign Bonds LMI are unconstrained. These bounds define
the lower and upper limits on the weights.

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelMV1BOX)

[1] "N" "mu" "Sigma" "targetReturn" "lower"

[6] "upper"

> N <- ncol(Scenarios)

> mu <- colMeans(Scenarios)

> Sigma <- cov(Scenarios)

> targetReturn <- mean(mu)

> # Box Constraints:

> lower <- c(SBI=0.2, SPI=0.01, SII=0.1, LMI=0.1, MPI=0.1, ALT=0.1)

> upper <- c(SBI=1.0, SPI=0.4, SII=0.3, LMI=1.0, MPI=0.3, ALT=0.1)

> dataMV1BOX <- dataAUTO(modelMV1BOX)

> amplDataFile(data=dataMV1BOX, project="myPortfolio")

The solution for the box-constrained Markowitz portfolio is:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMV1BOX <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMV1BOX) <- colnames(Scenarios)

> weightsMV1BOX

SBI SPI SII LMI MPI ALT

0.20000 0.26686 0.23314 0.10000 0.10000 0.10000

Note:

• If you like to allow for short-selling, then you just define negative
box constraints.

• It is important to note that the specification of box constraints is
completely independent of the portfolio model. We can add the
constraints to any existing model file in the same manner as we
did above for the MV1 model file, as long as the constraints do not
interfere with any other imposed constraints like the target return.
The modification can always be written in the following way

> ExampleModelBox <- c(

ExampleModel,

"param lower{1..N} ;",

"param upper{1..N} ;",

"subject to Lower {i in 1..N}: w[i] >= lower[i] ;",

"subject to Upper {i in 1..N}: w[i] <= upper[i] ;")

218 CONSTRAINED PORTFOLIOS

just as we did for the diversification constraints.

Efficient Frontier

As mentioned, the box constrained might be set such that some
target returns yield infeasible portfolios, and the solver is then not
able to solve the problem. Therefore we need to modify our standard
frontier run file:

> runBOXEDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"option eexit 100 ;",

"let targetReturn := -999;",

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" if solve_result_num == 0 then ",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runBOXEDR, project="myPortfolio")

Here we have two modifications. (i) Since AMPL bails out warnings
after 10 messages, the solver will stop its work before it was looping
through all portfolios. To prevent that, we can set the AMPL option
eexit to a positive value. The loop now skips iteration steps that are
infeasible. (ii) In addition weights are only printed to the output
file "myPortfolio.txt" when the solution was feasible, i.e. when
solve_result_num == 0.

16.4. GROUP CONSTRAINTS 219

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Box Constraints

Covariance Risk

R
et

ur
ns

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

Min−Var portfolio
Efficient Box constrained portfolios
Max−Return portfolio

FIGURE 16.2: Box Constrained Mean-Variance Portfolio

16.4 GROUP CONSTRAINTS

In this section we discuss Group Constrainted EDR Portfolios. Group
constraints are lower and upper bounds on the weights of a subgroup of
assets. They can be expressed by a set of linear equations.

l ≤ Aw ≤ u (16.2)

Where A is the constraints matrix and l and u are vectors. Their lengths is
given by the number of subgroups.
Group constraints can be applied to portfolios as additional linear con-
straints. Here is an example for three subgroups, (10) local equities, (2)
foreign equities, and (3) bonds.
Group 1 - all Swiss equities SPI, SII, MPI and ALT together not more than
70%
Group 2 - all foreign equities LMI, SPI, ALT together not more than 20%
Group 3 - all bonds SBI, LMI together at least 30%.

220 CONSTRAINED PORTFOLIOS

The corresponding matrix and constraint vectors are then given by

0
0

0.3

≤

S B I SP I S I I LM I M P I ALT

0 1 1 0 1 1
0 1 0 1 0 1
1 0 0 1 0 0

 ·w≤

0.7
0.2
1

 (16.3)

The AMPL implementation of group constraints looks as following:

> GroupConstraints <- c(

"param G ;",

"param lower{1..G} ;",

"param upper{1..G} ;",

"param A{1..G,1..N} ;",

"subject to Lower{i in 1..G}: sum{j in 1..N} A[i,j]*w[j]>=lower[i] ;",

"subject to Upper{i in 1..G}: sum{j in 1..N} A[i,j]*w[j]<=upper[i] ;")

These constraints can be attached to any existing AMPL-model in the
same manner as the box constraints. Similarly, the Run-File has to be
modified if the efficient frontier with group constraints is to be calculated:

> runGROUPEDR <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex;",

"option eexit 100 ;",

"let targetReturn := -999;",

"solve;",

"let minReturn := sum{i in 1..N} w[i]*mu[i];",

"let maxReturn := max{i in 1..N} mu[i];",

"for {i in 0..nReturn} {",

" let targetReturn := minReturn + i*(maxReturn-minReturn)/nReturn ;",

" solve ;",

" if solve_result_num == 0 then ",

" for {m in 1..N} printf \"%16.12f\", w[m] > myPortfolio.txt ;",

"};",

"exit ;")

> amplRunFile(run=runBOXEDR, project="myPortfolio")

[1] "minReturn" "maxReturn" "nReturn" "N" "mu"

[6] "Sigma" "targetReturn" "G" "lower" "upper"

[11] "A"

Again, it is important to note that we can impose group constraints not just
on the Markowitz portfolio model, but on any model, just as for the Box
constraints. We can always just append the constraints onto the existing
model:

> ExampleModelGROUP <- c(

ExampleModel,

"param G ;",

"param lower{1..G} ;",

"param upper{1..G} ;",

"param A{1..G,1..N} ;",

16.4. GROUP CONSTRAINTS 221

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Group Constraints

Covariance Risk

R
et

ur
ns

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

Min−Var portfolio
Efficient group constrained portfolios
Max−Return portfolio

FIGURE 16.3: Group Constrained Mean-Variance Portfolio

"subject to Lower{i in 1..G}: sum{j in 1..N} A[i,j]*w[j]>=lower[i] ;",

"subject to Upper{i in 1..G}: sum{j in 1..N} A[i,j]*w[j]<=upper[i] ;")

For non-linear, non-quadratic risk measures, the solver specification in
the run file that is given above has of course to be corrected.

222 CONSTRAINED PORTFOLIOS

16.5 TURNOVER CONSTRAINTS

The total portfolio turnover measures how frequently assets within a port-
folio are bought and sold. Turnover constraints are normally imposed
to limit the total amount of trades, i.e. to limit the overall change of the
portfolio.
The portfolio turnover is defined as following:

|w − v | (16.4)

where v is the vector of held assets. It is usually implemented as a con-
straint to a problem in the following form:

min
w

Risk (16.5)

s .t .

1′w = 1

wi ≥ 0
N
∑

i=1

|wi − vi | ≤ T

where T is the limit to the turnover. It is very easy to linearize the turnover
constraint in the following form:

min
w ,δ

Risk (16.6)

s .t .

1′w = 1

wi ≥ 0

wi − vi ≤δi

vi −wi ≤δi
N
∑

i=1

δi ≤ T

The AMPL implementation of the turnover constraints then looks as fol-
lowing:

> TurnoverConstraints <- c(

"param v ;",

"param turnover ;",

"var delta{1..N} ;",

"subject to Turnover1:sum{i in 1..N} delta[i] <= turnover ;",

"subject to Turnover2{i in 1..N}: w[i]-v[i] - delta[i] <= 0 ;",

"subject to Turnover3{i in 1..N}: v[i]-w[i]- delta[i] <= 0 ;")

16.5. TURNOVER CONSTRAINTS 223

Similar to the box and group constraint, the turnover constraints can just
be attached to any existing AMPL-model.

224 CONSTRAINED PORTFOLIOS

16.6 TRACKING ERROR

Often investors want to model a specific benchmark index. The tracking
error indicates how closely a portfolio follows the index to which it is
benchmarked. The most common definition of the tracking error is the
variance of the two portfolios’ return differences:

S
∑

s=1

(
N
∑

i=1

rs , i (wi − vi))
2− (

S
∑

s=1

N
∑

i=1

rs , i (wi − vi))
2 = (w − v)′Σ(w − v) (16.7)

where v is the vector of the benchmark index. The AMPL implementation
of tracking error constraints is very straightforward:

> TurnoverConstraints <- c(

"param v ;",

"param trackingerror ;",

"param Sigma ;",

"subject to Trackingerror1: sum{i in 1..N}

sum{j in 1..N} (w[i]-v[i])*Sigma[i,j]*(w[j]-v[j]) <= trackingerror ;")

Please note that the introduction of the Sigma-parameter is redundant if
it was already defined in the existing portfolio model.

16.6. TRACKING ERROR 225

CHAPTER 17

INTEGER CONSTRAINS

17.1 INTRODUCTION

Jobst, Horniman, Lucas, and GMitra [2001] have examined the effects of
applying

• Buy-in Thresholds,

• Cardinality Constraints, and

• Transaction Roundlot Restrictions

to the portfolio selection problem. These constraint are discrete and re-
quire the use of integer variables. They are therefore called mixed-integer
problems. It is well known that such discrete constraints are of practical
importance. But their disadvantage is that these kind of constraints make
the efficient frontier discontinuous, and the problems are therefore much
more difficult to optimize.
The definitions of these constraints are given in the article of Jobst et. al.
[2001]:

(i) "A buy-in threshold is defined as the minimum level below
which an asset is not purchased.This requirement eliminates
unrealistically small trades that can otherwise be included in
an optimum portfolio."

(ii) "Cardinality constraints: investors may wish to specify the
number of assets in their portfolio for the purpose of moni-
toring and control."

(iii) "Roundlots are defined as discrete numbers of assets
which are taken as the basic unit of investment. Investors are
restricted to making transactions only in multiples of these
roundlots.This overcomes the assumption of the infinite di-
visibility of assets inherent in the Mean-Variance rule."

227

228 INTEGER CONSTRAINS

AMPL is capable of implementing mixed-integer problems, but only cer-
tain solvers such as CPLEX, XPRESS and Gurobi are capable of solving
these problems. In this chapter, we will see how to implement the above
constraints.

17.2. BUY-IN CONSTRAINTS 229

17.2 BUY-IN CONSTRAINTS

As described by Jobst et al. [2001] "in the presence of buy-in constraints
the portfolio weights behave as semicontinuous variables (see Beale and
Forrest [1976]) and are modelled using variable upper and lower bounds
in the following way. A binary variable, δi , and finite lower bounds li

are associated with each asset i = 1, . . . , N . The buy-in thresholds are
represented by the constraint pair liδi ≤wi ≤δi and δi ∈ {0, 1}".
The mean-variance Markowitz portfolio model with buy-in constraints
for example is then given by the following problem:

min
w ,δ∈{0,1}

w ′Σw

s .t .

1′w = 1

µ′w = r

wi ≥ 0

liδi ≤wi ≤δi

We can introduce binary variables in AMPL by declaring them as binary
right at their declaration:

> "var delta{1..N} binary ;"

We can implement the buy-in constraints in AMPL in a very straightfor-
ward manner:

> BuyInConstraints <- c(

"param lower{1..N} ;",

"var delta{1..N} binary ;",

"subject to BuyinLower{i in 1..N}: w[i] - lower[i] * delta[i] >= 0 ;",

"subject to BuyinUpper{i in 1..N}: w[i] - delta[i] <= 0 ;")

Like in the previous chapter, we can just attach these constraints to any
existing model.

230 INTEGER CONSTRAINS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Buy−In Constraints

Covariance Risk

R
et

ur
ns

●●
●●

●●●●●●●
●●
●●
●●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●
●

●

●

Buy−in constrained Min−Var portfolio
Efficient buy−in constrained portfolios
Max−Return portfolio

FIGURE 17.1: Buy-In Constrained Mean-Variance Portfolio

17.3 CARDINALITY CONSTRAINTS

Cardinality constraints are not exclusively used in finance, but have a wide
application to reduce the number of actively used variables, for example
in database design. The cardinality is originally defined as the number of
elements in a set, but this definition is often extended such that the cardi-
nality denotes the number of active elements in a vector. The cardinality
of a vector with three elements unequal to zero for example is three.
The cardinality of a portfolio is defined to be the number of actively held
assets:

Card(w) :=
N
∑

i=1

1{wi 6=0} (17.1)

It is possible to model the cardinality with binary variables, similar to the
buy-in constraints. The mean-variance Markowitz portfolio model with
cardinality constraints for example is then given by the following problem:

17.4. ROUND LOT CONSTRAINTS 231

min
w ,δ∈{0,1}

w ′Σw (17.2)

s .t .

1′w = 1

µ′w = r

wi ≥ 0

wi ≤δi
N
∑

i=1

δi ≤C

Again we just declare the δ variable to be binary:

> "var delta{1..N} binary ;"

We can implement the cardinality constraints in AMPL in a very straight-
forward manner:

> CardinalityConstraints <- c(

"param C ;",

"var delta{1..N} binary ;",

"subject to Cardinality1{i in 1..N}: w[i] - delta[i] <= 0 ;",

"subject to Cardinality2: sum{i in 1..N} delta[i] <= C ;")

Like in the previous chapter, we can just attach these constraints to any
existing model.

17.4 ROUND LOT CONSTRAINTS

http://edoc.hu-berlin.de/series/speps/2007-1/PDF/1.pdf

Often, investments cannot be done continuously but in quantized man-
ner. A stock portion for example can only be purchased in even multiples
of price of one share. Round lot constraints take into account these discon-
tinouities of investments. The implementation of round lot constraints
in AMPL is more complicated than cardinality or buy-in constraints, and
has to be done in the existing portfolio model. It is not possible to attach
round lot constraints to an existing model.
To quantize the holding of assets, we have to change our portfolio weight
variables wi to have integer values instead of continuous ones:

wi ∈ [0, 1]→wi ∈ {0, 1, 2, . . .} (17.3)

We then have to rescale the weights by multiplying them with the relative
price of a single share (the price is of course divided by the total investment
volume to be scaled correctly):

232 INTEGER CONSTRAINS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Cardinality Constraints

Covariance Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

Cardinality constrained Min−Var portfolio
Efficient cardinality constrained portfolios
Max−Return portfolio

FIGURE 17.2: Cardinality Constrained Mean-Variance Portfolio

wi →wi ·ζi (17.4)

Since the investments are now quantized, they do not necessarily scale to
one, but may over- or undershoot the total investment volume. To soften
our full-investment constraint, we add two variables e+ ≥ 0 and e− ≥ 0 to
the constraints which then allow to over- and undershoot the constraint.
To keep these as small as possible, they are added to the objective in order
to be minimized:

1′w = 1→w ′ζ+ e+− e− = 1 (17.5)

As an example, we will show the efficient Markowitz problem with round
lot constraints and its implementation:

17.4. ROUND LOT CONSTRAINTS 233

min
wi∈Z,e+,e−

(w �ζ)Σ(w �ζ) + e++ e− (17.6)

s .t .

w ′ζ+ e+− e− = 1

µ′(w �ζ)≥ r

where � denotes pairwise vector multiplication.
Declaring a variable to have integer values in AMPL is very similar to
binary ones:

> "var w{1..N} integer ;"

The implementation of the efficient Markowitz problem with round lot
constraints in AMPL looks as following:

> modelMVRoundlot <- c(

"param N ;",

"param mu{1..N} ;",

"param zeta{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N}>=0, integer;",

"var eplus >= 0, default 0 ;",

"var eminus >= 0, default 0 ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} zeta[i]*w[i] * Sigma[i,j] * w[j]*zeta[j] + eplus + eminus ;",

"subject to Budget: sum{i in 1..N} w[i]*zeta[i] + eplus - eminus = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] * zeta[i] >= targetReturn ;")

> amplModelFile(model=modelMVRoundlot, project="myPortfolio")

We take the grand-mean as the target return. As mentioned, the ζ-vector
contains the prices of a single share of the respective asset, which has
to be scaled to the total amount of investment. For this demonstration
purpose, we choose the odd value 0.013 for all entries of the vector:

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelMVRoundlot)

[1] "N" "mu" "zeta" "Sigma" "targetReturn"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> zeta <- rep(0.00103,N)

> dataMVRoundlot <- dataAUTO(modelMVRoundlot)

> amplDataFile(data=dataMVRoundlot, project="myPortfolio")

Since now the product of the weight variables wi and the ζi represent the
portfolio weights, we replace this expression in the AMPL Run-File:

234 INTEGER CONSTRAINS

> runMVRoundlot <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m]*zeta[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMVRoundlot, project="myPortfolio")

Optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVRoundlot <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMVRoundlot) <- colnames(Scenarios)

> weightsMVRoundlot

SBI SPI SII LMI MPI ALT

0.00000 0.00721 0.25853 0.33269 0.00000 0.40170

The weights sum almost to one:

> sum(weightsMVRoundlot)

[1] 1.0001

To get the number of asset shares, we have to divide the weights-vector by
the scaled ζ-vector:

> assetshares <- weightsMVRoundlot/zeta

> names(assetshares) <- colnames(Scenarios)

> assetshares

SBI SPI SII LMI MPI ALT

0 7 251 323 0 390

Mixed round lot constrainted and continuous asset

Sometimes only a set of assets require round lot constraints whereas the
remaining assets can be treated continuously. To implement this consid-
eration into our problem, we have to leave some of our weight variables
wi continuous and set their corresponding price to be equal to one in
order treat them as before. Our existing AMPL implementation does not
need much modification.
In our model file, we add the number y of assets that do not need round
lot constraints, and a vector Y of the indices of those assets as parameters:

> modelMVRoundlot2 <- c(

"param N ;",

"param mu{1..N} ;",

"param zeta{1..N} ;",

"param Sigma{1..N,1..N} ;",

"param targetReturn ;",

"var w{1..N}>=0, integer;",

"var eplus >= 0, default 0 ;",

17.4. ROUND LOT CONSTRAINTS 235

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

Round lot Constraints

Covariance Risk

R
et

ur
ns

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

Round lot constrained Min−Var portfolio
Efficient round lot constrained portfolios
Max−Return portfolio

FIGURE 17.3: Round lot Constrained Mean-Variance Portfolio. As visible, the effect on the
efficient frontier is small when imposing round lot constraints.

"var eminus >= 0, default 0 ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} zeta[i]*w[i] * Sigma[i,j] * w[j]*zeta[j] + eplus + eminus ;",

"subject to Budget: sum{i in 1..N} w[i]*zeta[i] + eplus - eminus = 1 ;",

"subject to Reward: sum{i in 1..N} mu[i] * w[i] * zeta[i] >= targetReturn ;",

#New Parameters

"param y ;",

"param Y{1..y} ;")

> amplModelFile(model=modelMVRoundlot2, project="myPortfolio")

We include these additional parameters in the creation of the AMPL data-
file where we specify which assets are not subject to round lot constraints.
As an example, we chose the SPI, the LMI and the ALT indices, so our
Y -vector is (2, 4, 6). We also have to set the ζ-values of these assets to be
equal to one.

> Scenarios <- 100*LPP2005.RET[, 1:6]

> requiredData(modelMVRoundlot2)

[1] "N" "mu" "zeta" "Sigma" "targetReturn"

236 INTEGER CONSTRAINS

[6] "y" "Y"

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> zeta <- rep(0.00103,N)

> Y <- c(2,4,6)

> y <- length(Y)

> zeta[Y] <- 1

> dataMVRoundlot2 <- dataAUTO(modelMVRoundlot2)

> amplDataFile(data=dataMVRoundlot2, project="myPortfolio")

In the AMPL run-file we can then relax the specific weight variables wi of
the corresponding assets to be continuous. This can be done by the AMPL
relax-command which removes the integer value requirement of these
variables:

> runMVRoundlot2 <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"let {i in 1..y} w[Y[i]].relax := 1;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m]*zeta[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMVRoundlot2, project="myPortfolio")

We can now again optimize the portfolio and extract the weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVRoundlot2 <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMVRoundlot2) <- colnames(Scenarios)

> weightsMVRoundlot2

SBI SPI SII LMI MPI ALT

0.000000 0.008623 0.254410 0.335706 0.000000 0.401261

The weights only differ slightly from the first calculation.

17.4. ROUND LOT CONSTRAINTS 237

CHAPTER 18

TRANSACTION COSTS

18.1 INTRODUCTION

There is no doubt, controlling transaction costs is an elementary aspect in
each investment process, see Lobo, Fazel, and Boyd [2007], and Kopman,
and Liu [2011]. In this chapter we will show how to manage transaction
costs. The topics are:

• Linear Costs

• Piecewise Linear Costs

• Nonlinear Transaction Costs

• Fixed Transaction Costs

Throughout this chapter we use as an example the Swiss pension fund
benchmark portfolio. The data are part of the Rmetrics package time-

Series and are loaded together with the fPortfolio package. As the
benchmark portfolio we use the equal weights portfolio which is charac-
terized by the following settings.
The targetReturn for the equal weights portfolio is defined by the grand
mean of the portfolio scenarios, and the targetRisk is defined by the
grand variance of the portfolio. mu is the vector of the sample means of
the assets, and Sigma the sample covariance matrix.

239

240 TRANSACTION COSTS

18.2 LINEAR TRANSACTION COST CONSTRAINTS

Linear transaction costs are directly proportional to the amount of an
asset that is bought or sold. The individual cost ci ,b of buying asset i is not
necessarily the same as the cost ci ,s of selling the same asset i . A simple
form of the linear transaction cost function, see Kopman and Liu [2011],
is:

TCp (w , v) = (18.1)
n
∑

j=1

�

ci ,b max(wi − vi , 0) + ci ,s max(vi −wi , 0)
�

where v is again the vector of held assets and wi are the new asset weights
after transactions. To ensure convexity, it must be true that ci ,b u y > 0,
ci ,s e l l > 0. More complicated piece-wise linear transaction cost functions
may include multiple break points at the buy side as well as the sell side.
We will look at this scenario later.
Normally, transaction costs are constrained together with the expected
future return. As an example, the standard Markowitz portfolio problem
can be represented as:

min
w

w ′Σw

s .t .

1′w = 1

µ′w −TCp (w , v)≥ r

wi ≥ 0

TCp (w , v) is a non-linear function, but it is easily possible to linearize it
in a similar manner as the turnover constraints:

min
w

w ′Σw

s .t .

1′w = 1

µ′w − cb ′δb − cs ′δs ≥ r

wi ≥ 0

δi ,b ≥ 0

δi ,s ≥ 0

δi ,b ≥wi − vi

δi ,s ≥ vi −wi

18.2. LINEAR TRANSACTION COST CONSTRAINTS 241

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Linear transaction costs

w−v

Tr
an

sa
ct

io
n

co
st

s

Buying costs
Selling costs

FIGURE 18.1: Visualization of linear transaction costs

We can now easily formulate an AMPL model file.

> modelMVtrans <- c(

"param N ;",

"param Sigma{1..N,1..N} ;",

"var db{1..N} >= 0, default 0 ;",

"var ds{1..N} >= 0, default 0 ;",

"var w{1..N} >= 0, default 1/N ;",

"minimize Objective: sum{i in 1..N} sum{j in 1..N} w[i] * Sigma[i,j] * w[j] ;",

"subject to Budget: sum{i in 1..N} w[i] = 1 ;",

Transaction costraints

"param mu{1..N} ;",

"param cb{1..N} ;",

"param cs{1..N} ;",

"param v{1..N} ;",

"param targetReturn ;",

"subject to Return: sum{i in 1..N} (mu[i]*w[i] -db[i]*cb[i] -ds[i]*cs[i]) >= targetReturn ;",

"subject to Buy{i in 1..N}: db[i] >= w[i]-v[i] ;",

242 TRANSACTION COSTS

"subject to Sell{i in 1..N}: ds[i] >= v[i]-w[i] ;")

> amplModelFile(model=modelMVtrans, project="myPortfolio")

The rest of the procedure is the same as for the Markowitz portfolio:
We use the same AMPL run-file:

> runMVtrans <- c(

"model myPortfolio.mod ;",

"data myPortfolio.dat ;",

"option solver cplex ;",

"solve ;",

"for {m in 1..N} printf \"%16.6f\", w[m] > myPortfolio.txt ;",

"exit ;")

> amplRunFile(run=runMVtrans, project="myPortfolio")

We add the v -vector and the individual buy and sell costs to the AMPL
data file:

> Scenarios <- 100*LPP2005.RET[, 1:6]

> N <- ncol(Scenarios)

> Sigma <- cov(Scenarios)

> mu <- colMeans(Scenarios)

> targetReturn <- mean(mu)

> v <- rep(1/N,N)

> cb <- rep(0.02*max(mu),N)

> cs <- rep(0.02*max(mu),N)

> dataMVtrans <- dataAUTO(modelMVtrans)

> amplDataFile(data=dataMVtrans, project="myPortfolio")

We can then optimize the portfolio and extract the portfolio weights:

> system("ampl myPortfolio.run > myPortfolio.out")

> weightsMVtrans <- as.numeric(scan("myPortfolio.txt"))

> names(weightsMVtrans) <- colnames(Scenarios)

Again, these are constraints that can in be attached to every portfolio
model in the same manner as turnover or box constraints.

> LinearTransactionConstraints <- c(

"param mu{1..N} ;",

"param cb{1..N} ;",

"param cs{1..N} ;",

"param v{1..N} ;",

"param targetReturn ;",

"subject to Return: sum{i in 1..N} (mu[i]*w[i] -db[i]*cb[i] -ds[i]*cs[i]) >= targetReturn ;",

"subject to Buy{i in 1..N}: db[i] >= w[i]-wo[i] ;",

"subject to Sell{i in 1..N}: ds[i] >= wo[i]-w[i] ;")

If a constraint on the expected return already exists, this of course has to
be removed before attaching transaction cost constraints.
Since the market impact cost is a nonlinear function, users can model it
by utilizing either a multiple breakpoint piece-wise linear transaction cost
described in the next subsection, or a nonlinear transaction cost function.

18.3. PIECE-WISE LINEAR TRANSACTION CONSTRAINTS 243

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

Piece−wise linear transaction costs

w−v

tr
an

sa
ct

io
n

co
st

s

Buying costs
Selling costs

FIGURE 18.2: Piece-wise linear transaction costs

18.3 PIECE-WISE LINEAR TRANSACTION CONSTRAINTS

Often, transaction cost often have break points where the cost rate changes.
These are so called piece-wise linear transaction costs. Piece-wise lienar
functions are also often utilized to approximate non-linear cost functions.
AMPL allows the implementation of simple piece-wise linear functions.
The necessary parameters for this are the break points, and the correspond-
ing slopes of the function before and after a break point. For example, a
simple function with one breakpoint is implemented in the following way:

> "<<break;slope1, slope2>> * x "

where x is the variable. Note that you only have to give the different slopes
and the breakpoint(s) of the function, no offset parameter has to be given.
If we have three instead of two linear pieces, we just have to add the
additional breakpoint and slope to the expression:

> "<<break1, break2 ;slope1, slope2, slope3>> * x "

244 TRANSACTION COSTS

If we want to make our transaction costs piece-wise linear with one break-
point on both the buy and the sell side, we have to add two or more addi-
tional cost parameters to specify the cost slopes as well as the two break
points to our constraints:

> PiecewiseTransactionConstraints <- c(

"param mu{1..N} ;",

"param targetReturn ;",

"param cb1{1..N} ;",

"param cs1{1..N} ;",

"param cb2{1..N} ;",

"param cs2{1..N} ;",

"param breakb{1..N} ;",

"param breaks{1..N} ;",

"param v{1..N} ;",

"var db{1..N} >= 0, default 0 ;",

"var ds{1..N} >= 0, default 0 ;",

"subject to Return: sum{i in 1..N} (mu[i]*w[i] ",

"- <<breakb[i];cb1[i], cb2[i]>> db[i] ",

"- <<breakb[i];cs1[i], cs2[i]>> ds[i]) >= targetReturn ;",

"subject to Buy{i in 1..N}: db[i] >= w[i]-v[i] ;",

"subject to Sell{i in 1..N}: ds[i] >= v[i]-w[i] ;")

It is very important to note that AMPL handles convex and non-convex
piecewise linear functions differently: If the transaction costs are convex,
AMPL is able to convert the model into a linear problem which can then
be solved efficiently. If the transaction costs are non-convex, i.e. one of
the slopes is lower than its predecessor, the portfolio model is not convex
anymore, and there will be more than one localy optimal solution. AMPL
then uses mixed-integer programming to solve the problem.

18.4. FIXED TRANSACTION COSTS 245

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
04

0.
08

Convex piece−wise transaction costs

w−v

tr
an

sa
ct

io
n

co
st

s

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
04

0.
08

Non−convex piece−wise transaction costs

w−v

tr
an

sa
ct

io
n

co
st

s

FIGURE 18.3: Comparison of convex and non-convex piece-wise linear transaction costs

18.4 FIXED TRANSACTION COSTS

Fixed transaction costs are independent of the traded amount of an asset.
Instead, a fixed amount is imposed every time a trade is done. With differ-
ent costs for sells and purchases, a mathematical formulation for fixed
transaction costs looks as following:

T C f (w , v) =
∑

i=1

�

1{wm>vm }ci ,b +1{wm<vm }ci ,s

�

(18.2)

where ci , f i x b u y and ci , f i x s e l l are fixed costs of buying and selling asset i ,
respectively.

This is a very similar constraint as the cardinality constraint we encoun-
tered in the last section since we are only interested in the number of
trades, not in the trade volume. We therefore again deal with a mixed-
integer problem. We can use the same approach to formulate the con-
straints:

246 TRANSACTION COSTS

wi − vi ≤δi ,b (18.3)

vi −wi ≤δi ,s

µ′w −
�

N
∑

i=1

δi ,b · ci ,b +δi ,s · ci ,s

�

≥ r

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Fixed transaction costs

w−v

tr
an

sa
ct

io
n

co
st

s ●

●

●

Buying costs
Selling costs

FIGURE 18.4: Fixed transaction costs

The portfolio constraints can then be implemented as:

> FixedTransactionConstraints <- c(

"param mu{1..N} ;",

"param targetReturn ;",

"param cb{1..N} ;",

"param cs{1..N} ;",

"param v{1..N} ;",

"var db{1..N} binary ;",

"var ds{1..N} binary ;",

"var w{1..N} >= 0, default 1/N ;",

"subject to Reward: sum{i in 1..N} (mu[i] * w[i]- db[i]*cb[i] -ds[i]*cs[i])>= targetReturn ;",

18.4. FIXED TRANSACTION COSTS 247

"subject to Buy1{i in 1..N}: w[i]-wo[i] <= db[i] ;",

"subject to Sell2{i in 1..N}: wo[i]-w[i] <= ds[i] ;")

248 TRANSACTION COSTS

18.5 COMBINATION OF FIXED AND PIECE-WISE LINEAR TRANSACTION

COSTS

Of course, transaction costs can appear in a mixed form of fixed and
linear transaction costs. It is not difficult to combine these two forms of
transaction costs:

wi − vi ≤δi ,b ,l (18.4)

vi −wi ≤δi ,s ,l

wi − vi ≤δi ,b , f

vi −wi ≤δi ,s , f

µ′w (18.5)

−
�

N
∑

i=1

δi ,b , f · ci ,b , f +δi ,s , f · ci ,s , f (18.6)

+δi ,b ,l · ci ,b ,l +δi ,s ,l · ci ,s ,l

�

≥ r

The AMPL implementation of these constraints looks as following:

> LinearFixedTransactionConstraints <- c(

"param mu{1..N} ;",

"param targetReturn ;",

"param cbf{1..N} ;",

"param csf{1..N} ;",

"param cbl{1..N} ;",

"param csl{1..N} ;",

"param v{1..N} ;",

"var dbf{1..N} binary ;",

"var dsf{1..N} binary ;",

"var dbl{1..N} >= 0, default 0 ;",

"var dsl{1..N} >= 0, default 0 ;",

"var w{1..N} >= 0, default 1/N ;",

"subject to Reward: sum{i in 1..N} (mu[i] * w[i]",

" -dbf[i]*cbf[i] -dsf[i]*csf[i] ",

" -dbl[i]*cbl[i] -dsl[i]*csl[i] >= targetReturn ;",

"subject to Buy1{i in 1..N}: w[i]-v[i] <= dbf[i] ;",

"subject to Sell1{i in 1..N}: v[i]-w[i] <= dsf[i] ;",

"subject to Buy2{i in 1..N}: w[i]-v[i] <= dbl[i] ;",

"subject to Sell2{i in 1..N}: v[i]-w[i] <= dsl[i] ;")

If we want to have piece-wise linear constraints, we have to add the break-
points and the additional cost slopes to the constraints:

> PiecewiseLinearFixedTransactionConstraints <- c(

"param mu{1..N} ;",

"param targetReturn ;",

"param cbf{1..N} ;",

"param csf{1..N} ;",

"param cbl1{1..N} ;",

18.5. COMBINATION OF FIXED AND PIECE-WISE LINEAR TRANSACTION COSTS 249

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Combination of fixed & piece−wise linear transaction costs

w−v

tr
an

sa
ct

io
n

co
st

s

●

●

●

Buying costs
Selling costs

FIGURE 18.5: Combination of fixed and piece-wise linear transaction costs

"param csl1{1..N} ;",

"param cbl2{1..N} ;",

"param csl2{1..N} ;",

"param breakb{1..N} ;",

"param breaks{1..N} ;",

"param v{1..N} ;",

"var dbf{1..N} binary ;",

"var dsf{1..N} binary ;",

"var dbl{1..N} >= 0, default 0 ;",

"var dsl{1..N} >= 0, default 0 ;",

"var w{1..N} >= 0, default 1/N ;",

"subject to Reward: sum{i in 1..N} (mu[i] * w[i]",

" -dbf[i]*cbf[i] -dsf[i]*csf[i] ",

" -<<breakb[i];cbl1[i], cbl2[i]>> dbl[i] ",

" -<<breakb[i];csl1[i], csl2[i]>> dsl[i])>= targetReturn ;",

"subject to Buy1{i in 1..N}: w[i]-v[i] <= dbf[i] ;",

"subject to Sell1{i in 1..N}: v[i]-w[i] <= dsf[i] ;",

"subject to Buy2{i in 1..N}: w[i]-v[i] <= dbl[i] ;",

"subject to Sell2{i in 1..N}: v[i]-w[i] <= dsl[i] ;")

PART IX

APPENDIX

251

18.5. COMBINATION OF FIXED AND PIECE-WISE LINEAR TRANSACTION COSTS 253

CHAPTER 19

R/AMPL API

19.1 R/AMPL API 1.0

The first R/AMPL interface was written in November 2011 and presented
at the Rmetrics Meielisalp Workshop 2012. The functions are part of the
fPortfolio package. They can be find in the package R folder in the following
scripts:

• amplExec.R

• amplRxtractors.R

• amplInterface.R

• ampLibrary.Y

19.2 R/AMPL API 2.0

Is the new extended R/AMPL interface used in this documentation. In the
following the R functions are briefly described.
ALMP File Creation Functions

> amplModelFile <- function(model, project)

{

Create the AMPL Model File:

amplModelOpen(project)

amplModelAdd(model, project)

invisible()

}

> amplDataFile <- function(data, project)

{

Create the AMPL Data File:

amplDataOpen(project)

amplDataAdd2(data, project)

255

256 R/AMPL API

invisible()

}

> amplRunFile <- function(run, project)

{

Create the AMPL Run File:

amplRunOpen(project)

amplRunAdd(run, project)

invisible()

}

The functions called are those from API 1.0 beside the function

> amplDataAdd2 <- function(data, project)

{

funName <- paste0("amplDataAdd", c("Value", "Vector", "Matrix"))

dataName <- names(data)

for (i in 1:length(data)) {

TEST <- 1 +

as.integer(length(data[[i]])!=1) +

as.integer(is.matrix(data[[i]]))

fun <- match.fun(funName[TEST])

fun(data = dataName[i], data[[i]], project) }

invisible()

}

that replaces the function amplDataAdd2() from API 1.0.

Printing Functions
The API 2.0 printing functions are:

> printModel <- function(x) print(as.data.frame(x), right=FALSE)

> printRun <- function(x) print(as.data.frame(x), right=FALSE)

> printData <- function(x) print(x)

Utility Functions
New are also the following draft untility functions:

• makeGroupConstraints() - creates constraints matrix for group
constraints using the “Constraints Generator Language” from Rmet-
rics package fPortfolio

• optimize() - a simple draft function that optimizes and returns the
results from portfolio design

• portfolioFigures() - a simple draft function that computes some
selected key figures for an optimized portfolio

• portfolioPlot() - a simple draft function that computes some
selected key figures for an optimized portfolio

19.2. R/AMPL API 2.0 257

This functions are still prelininary and will be replaced in the future by
more elaborate functions.

Constraints Generator:

> makeGroupConstraints <-

function(data, groups, BIG=1e6)

{

Draft Group Constraints Generator:

constraints <- portfolioConstraints(data, portfolioSpec(), groups)

sumW <- rbind(constraints@minsumWConstraints, constraints@maxsumWConstraints)

ineqA <- sumW[, -1]

ineqA.bounds <- sumW[, 1]

ineqA.lower <- rep(-BIG, times = nrow(ineqA))

ineqA.upper <- rep(+BIG, times = nrow(ineqA))

directions <- rownames(ineqA)

for (i in 1:nrow(ineqA)) {

if (directions[i] == "lower") ineqA.lower[i] <- ineqA.bounds[i]

if (directions[i] == "upper") ineqA.upper[i] <- ineqA.bounds[i] }

list(G=nrow(ineqA), Groups=ineqA, lowerG=ineqA.lower, upperG=ineqA.upper)

}

Optimizer:

> optimize <- function(project)

{

Draft Optimizer and Result Extractor:

system(paste0("ampl ", project, ".run"))

result <- readLines(paste0(project, ".txt"))

cat(t(t(result)), sep="\n")

result <- result[2:(length(result)-2)]

for (i in 1:3) result <- gsub(" ", " ", result)

weights <- matrix(unlist(strsplit(result, split=" ")), byrow=TRUE, ncol=2)

weights <- as.numeric(weights[,2])

weights

}

Portfolio Key Figures:

> portfolioFigures <- function(assetReturns, weights)

{

Draft Portfolio Figures:

.pfolioTargetReturn <- function (x, weights) as.vector(colMeans(x) %*% weights)

.pfolioTargetRisk <- function (x, weights) as.vector(sqrt(weights %*% cov(x) %*% weights))

targetReturn <- .pfolioTargetReturn(assetReturns, weights)

targetRisk <- .pfolioTargetRisk(assetReturns, weights)

maxLoss <- pfolioMaxLoss(assetReturns, weights)

CVaR <- pfolioCVaR(assetReturns, weights)

ans <- c(targetRisk, targetReturn, maxLoss, CVaR)

names(ans) <- c("Risk", "Return", "MaxLoss", "CVaR")

ans

}

Portfolio Plots:

258 R/AMPL API

> portfolioPlot <- function(assetReturns, weights, hull)

{

Draft Portfolio Plots:

par(mfrow=c(2, 2))

Hull:

x <- 100 * assetReturns

nAssets <- ncol(x)

x1 <- pfolioReturn(x, weights)

x2 <- pfolioReturn(x, rep(1/nAssets, nAssets))

plot(hull, type="l", main="Feasible Set")

points(colSds(x1)/100, colMeans(x1)/100, pch=19)

points(colSds(x2)/100, colMeans(x2)/100, pch=19, col="orange")

grid()

Wealth:

X <- cbind(x1, x2)

plot(100*cumulated(X/100), main="Wealth", plot.type="s", col=c("black", "orange"))

Drawdowns:

dd <- 100*drawdowns(X/100)

plot(dd, plot.type="s", main="Drawdowns", col=c("black", "orange"))

abline(h=min(dd[, 1]), lty=3)

abline(h=min(dd[, 2]), lty=1, col="orange")

Histogram:

hist(x, col="steelblue", border="white", main="Density")

box()

invisible()

}

	Preface
	About this Handbook
	About PART I
	Getting Started

	Contents
	I Solvers
	1 R/AMPL Solver Interface
	1.1 AMPL: A Model Programming Language
	1.2 Working with AMPL on the Console
	1.3 The Rmetrics Interface Concept

	2 Coin-or Infrastructure
	2.1 Binary Distribution Project
	2.2 Solver for Quadratic Programming Problems
	2.3 Solver for Mixed Integer Programming

	3 Kestrel/Neos Solver Interface
	3.1 Kestrel: Interface
	3.2 Running a Kestrel Job

	4 Ampl/Rneos Solver Interface
	4.1 rneos: NEOS Server Interface
	4.2 Using rneos Together with AMPL
	4.3 Preparing Model, Data and Run Files

	II Mean-Variance Designs
	5 Mean-Variance Portfolios
	5.1 Introduction
	5.2 Feasible set
	5.3 Global Minimum Variance Porfolio
	5.4 The Efficient Minimum Variance Portfolio
	5.5 Efficient Maximum Return Portfolio
	5.6 Equi-Distant Return Frontier Portfolio
	5.7 Critical Line Algorithm
	5.8 Maximum Sharpe Ratio Portfolio
	5.9 Quadratic Sharpe-Ratio portfolio
	5.10 Mean-Variance Hull

	6 Lower Partial Moments
	6.1 Introduction
	6.2 Nonlinear Lower Partial Moments Portfolio
	6.3 Linear Mean-Shortfall Portfolio
	6.4 Mean-Semivariance Portfolio
	6.5 Quadratic Lower Partial Moments Portfolio
	6.6 Dependence on a

	III Robust Portfolio Estimations
	7 Covariance Robustification
	7.1 Introduction
	7.2 Rank Correlation Estimators
	7.3 High Breakdown Points Estimators
	7.4 Shrinkage Estimators

	8 M and S Estimators
	8.1 Introduction
	8.2 M Portfolios
	8.3 Huber loss
	8.4 S Portfolios

	9 MAD-Portfolios
	9.1 Introduction
	9.2 Nonlinear MAD-Portfolio
	9.3 Linear Min-Risk MAD-Portfolio
	9.4 Linear efficient MAD-Portfolio
	9.5 Max-Return MAD-Portfolio
	9.6 Equi-distant Return Frontier
	9.7 Critical Line Algorithm MAD-Portfolio
	9.8 Reward/Risk Ratio Portfolio
	9.9 Hull of the MAD-Portfolio

	IV Mean-CVaR Designs
	10 Mean-CVaR Portfolios
	10.1 Introduction
	10.2 Global Minimum Risk CVaR Portfolio
	10.3 Efficient Min-Risk Portfolios
	10.4 Efficient Max-Return Portfolios
	10.5 Equi-Distant Return Frontier
	10.6 Critical Line Algorithm
	10.7 STARR Ratio Portfolio
	10.8 Mean-CVaR Hull

	11 MiniMax Portfolios
	11.1 Introduction
	11.2 MiniMax Portfolio
	11.3 Efficient Minimax Portfolio
	11.4 Equi-distant Return Frontier
	11.5 Hull

	V Mean-CDaR Designs
	12 Mean-CDaR Portfolios
	12.1 Introduction
	12.2 Global Minimum Risk Efficient Portfolio
	12.3 Minimum Risk Mean-CDaR Efficient Portfolios
	12.4 Maximum Return Mean-CDaR Efficient Portfolio
	12.5 Equi-distant Return Frontier
	12.6 The CDAR Critical Line Algorithm
	12.7 Reward/Risk Ratio Portfolio
	12.8 Hull

	VI Diversification
	13 Portfolio Diversification
	13.1 Introduction
	13.2 Diversification
	13.3 Herfindahl Diversified Portfolios
	13.4 Entropy De-Concentrated Portfolios
	13.5 Dependence Diversified Portfolios

	14 Covariance Risk Parity
	14.1 Introduction
	14.2 Risk Parity Portfolio
	14.3 Efficient Risk-Parity portfolio
	14.4 Efficient frontier

	VII Multiobjective Programming
	15 Mulit-objective Variance Portfolios
	15.1 Introduction
	15.2 Critical Line Algorithm
	15.3 Mean - Covariance - Entropy Diversification

	VIII Constraints
	16 Constrained Portfolios
	16.1 Introduction
	16.2 Short Selling Portfolios
	16.3 Box Constrained Markowitz Portfolio
	16.4 Group Constraints
	16.5 Turnover Constraints
	16.6 Tracking error

	17 Integer Constrains
	17.1 Introduction
	17.2 Buy-in Constraints
	17.3 Cardinality Constraints
	17.4 Round Lot Constraints

	18 Transaction Costs
	18.1 Introduction
	18.2 Linear Transaction Cost Constraints
	18.3 Piece-wise Linear Transaction Constraints
	18.4 Fixed Transaction Costs
	18.5 Combination of Fixed and Piece-wise Linear Transaction Costs

	IX Appendix
	19 R/AMPL API
	19.1 R/AMPL API 1.0
	19.2 R/AMPL API 2.0

